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Abstract

The advancement of learning-based control in soft robotics is
fundamentally constrained by the simulation to real gap, a critical
divergence between computational speed and physical fidelity. This thesis
provides a rigorous analysis of existing modeling paradigms to define this
gap mathematically and justify the necessity for Data-Driven Abstraction.
We demonstrate that analytical approximations fail to capture essential non-
linear behaviors under external loads, while ground-truth numerical methods,
like the finite element method, scale with cubic complexity, rendering them
intractable for the massive data throughput required by reinforcement
learning. To resolve this discrepancy, this dissertation proposes a unified
pipeline that decouples physical ground-truth generation from runtime
execution. A series of research studies established the theoretical
foundations for two targeted abstraction strategies: (1) Surrogate modeling
via model order reduction to compress macroscopic body dynamics into fast,
rigid-body-compatible formats, and (2) Neural physics engines utilizing
data-driven contact model approximations to capture the complex, high-
dimensional mechanics of the contact interface. This methodology aims to
bridge the reality gap by achieving the computational efficiency of rigid-
body engines without sacrificing the continuum physics essential for robust
sim-to-real transfer. Ultimately, this work contributes a generalizable
pipeline to abstract high-dimensional Finite Element data into low-
dimensional but essential features, applying this strategy to the two major
domains of deformation-incurring systems in robotics to enable scalable and
physically faithful learning.

Keyword : Physics-based Simulation, Sim-to-Real Transfer, Data-driven
Abstraction, Reinforcement Learning, Soft Robotics, Vision-Based Tactile
Sensor

Student Number : 2019-20340
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Chapter 1.

Introduction

1.1. Deformable Systems in Physical Interaction

The progression of robotics toward general-purpose physical intelligence is
fundamentally constrained by the ability to master interaction with unstruc-
tured environments [1-3]. Unlike the idealized rigid-body dynamics often
assumed in classical control theory [4—6], the physical world is characterized
by continuous compliance and complex deformation. This phenomenon is not
merely a disturbance but the fundamental mechanism of interaction inherent
to any physical agent. Regardless of the specific hardware implementation,
the mechanics of continuum deformation govern the fundamental capabilities
of robotic agents to move [7, 8], manipulate [9, 10], and perceive [11, 12].
Consequently, the mastery of these systems requires a fundamental shift from
rigid-body assumptions to models that can accurately represent and exploit
continuum behavior.

A grand challenge in mastering these systems lies in the representation
of deformation. Conventional approaches utilizing lumped parameter mod-
els [13], voxelization [14], and rigid body approximations [15] inherently
discard the high-dimensional nature of continuum behavior. These methods
reduce a distributed spatial phenomenon to discrete points and lose the critical
stress and strain field information required for high-fidelity interaction [16,17].
Consequently, the only valid ground truth for analyzing deformable systems
is continuum mechanics, numerically realized through mesh-based Finite El-
ement Methods (FEM) [18]. A mesh-based representation discretizes the con-
tinuous body into finite elements to capture the non-linear transmission of
force and the complex evolution of shape that define the physical reality of
soft interaction [19, 20].



Establishing a high-fidelity mathematical representation creates a sub-
sequent necessity for extensive data acquisition when applied to modern
learning-based control and perception frameworks. The most dominant and
modern method of training robots is Reinforcement Learning (RL), which
requires massive datasets involving millions of trial-and-error explorations to
approximate the complex manifolds of control and perception [21-23]. The
acquisition of such data in the real world is fundamentally unscalable due
to physical limitations, including material fatigue, hysteresis, and the risk of
catastrophic damage during the exploration phase. Therefore, the utilization
of a simulation environment is not merely a convenience but a strict pre-
requisite for the development of learning-based controllers and perception
models [24-26].

1.2. Computational Bottleneck of Simulating Defor-
mation

The physical behavior of deformable robotic components is fundamentally
governed by the laws of continuum mechanics. When a compliant material
undergoes interaction, the process is described mathematically by a mapping
from a reference configuration to a current configuration, where the inter-
nal stress state is determined by a constitutive law such as a hyperelastic
Neo-Hookean [27] or Mooney-Rivlin model [28]. Accurately simulating this
behavior requires enforcing the conservation of momentum and mass, which
necessitates solving Partial Differential Equations (PDEs). The FEM addresses
this by discretizing the continuous body into a mesh, where a single compo-
nent requiring fine detail can easily exceed ten thousand nodes. This results in
a system of equations with tens of thousands of degrees of freedom.

This high dimensionality creates a computational bottleneck often re-
ferred to as the curse of dimensionality. Solving the resulting linear system
involving the stiffness matrix at every time step is an operation with cubic
complexity, depending on the solver. While this process yields high-fidelity

physics capable of resolving distributed pressure maps and tangential shear
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fields, the computational load is prohibitive for dynamic simulations running
at the high frequencies required for robot control. This inherent slowness of
high-fidelity physics stands in sharp contrast to standard robotics simulators,
which typically utilize rigid body dynamics [29-31]. These engines treat links
as rigid components and model contact as a set of constraints preventing
inter-penetration [32-34]. While this approximation allows for computation
in microseconds, it fundamentally discards the essential information required
for deformation-based interactions and yields a substantial reality gap for soft
systems.

This discrepancy between physical fidelity and computational speed cre-
ates a specific crisis for robot learning, which requires simulators that are si-
multaneously fast and faithful. To effectively bridge this gap, a valid simulator
must satisfy three distinct criteria to avoid common failure modes in learn-
ing. First, it must possess physical fidelity sufficient to capture the non-linear
continuum mechanics of the real system to prevent negative transfer during
reality gap crossing. Second, it must achieve computational speed comparable
to rigid-body engines to enable the massive throughput required for policy
convergence. Third, it must be differentiable allowing the model to be fine-
tuned via real-world data to correct for inevitable parameter mismatches such
as material fatigue or unmodeled friction. Current simulation paradigms force
a compromise by offering either fidelity or speed, but rarely both, and almost

never with the adaptability required for robust sim-to-real transfer.

1.3. Motivation and Rationale

The limitations of existing simulation paradigms present a fundamental dilemma
in robotic learning, where no single approach simultaneously satisfies the re-
quirements of physical fidelity and computational speed. Analytical models
provide speed but lack generality, while numerical solvers provide fidelity
but lack the necessary throughput. This dissertation proposes that the viable
methodology to resolve this conflict is to decouple the generation of physi-

cal ground truth from the runtime execution of the simulation. This research



operates on the premise that the complex behavior of deformable continuum
systems, while mathematically infinite-dimensional, can be effectively repre-
sented by a compressed set of latent features governed by the specific structural
and material constraints of the robot. Consequently, the solution is not to sim-
plify the physics equations a priori but to utilize high-fidelity FEM data as an
offline teacher to learn a compressed and differentiable inference model.

The concept of this approach is shown in Figure 1.1 that constitutes a
paradigm shift from numerical solving to data-driven inference. In a traditional
solver, the system state is computed by iteratively resolving partial differential
equations at every time step, a process constrained by the complexity of the
mesh. In the proposed data-driven pipelines, the physics engine effectively
becomes a function approximator. By training on valid FEM data, the model
learns to predict the continuum mechanical response directly. This transforma-
tion reduces the computational complexity from a polynomial dependence on
mesh size to a constant-time operation. Furthermore, unlike rigid analytical
models, these learned surrogates are differentiable. This allows the simula-
tion to be fine-tuned against sparse real-world data, thereby closing the reality
gap through system identification. Therefore, data-driven abstraction serves
as the essential bridge that transforms computationally intractable continuum

physics into fast, faithful, and learnable simulation engines.

1.4. Methodology of Data-Driven Abstraction

Based on this rationale, this dissertation proposes a unified methodological
framework for realizing accelerated high-fidelity simulation. The scope of this
research encompasses the end-to-end pipeline of abstraction, which proceeds
through three distinct stages. The first stage is deformation modeling, where
high-fidelity FEM simulations are constructed to serve as the absolute ground
truth for continuum behavior. The second stage is feature abstraction, where
the high-dimensional mesh data is processed to extract the essential low-
dimensional features, such as kinematic modes or topological graphs relevant

to the specific robotic function. The third stage is training the inference model,
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Figure 1.1: Tradeoff between the fidelity and the speed of the deformation
simulators.

where deep neural networks are trained to map the system inputs to these
abstracted states, effectively replacing the iterative numerical solver with a
fast, differentiable function approximator.

To demonstrate the efficacy and generality of this framework, the research
applies this abstraction strategy to the two topologically distinct domains of
robotic interaction: the deformable body (action) and the contact interface

(perception).

* Part A: Dynamics of the Deformable Body. The first domain is vol-
umetric deformation which occurs within the internal structure of the
robot. In the context of soft robotics, this internal deformation is cou-
pled with actuation to define the macroscopic configuration and dynamic
workspace of the system. Here, the functional goal is macroscopic con-
trol. Therefore, the abstraction strategy prioritizes global kinematic com-

patibility to enable the training of whole-body motion policies. This is
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realized through a surrogate model which maps continuum deformation
into a virtual kinematic chain allowing soft robots to be simulated within

standard rigid-body physics engines with high computational efficiency.

* Part B: Modeling the Soft Contact Interface. The second domain is
boundary deformation which occurs at the interface between the robot
and the environment. Here, the localized deformation of the surface
layer encodes the contact geometry and force distribution essential for
exteroceptive perception. The functional goal is microscopic perception.
Therefore, the abstraction strategy prioritizes local surface topology and
the generalization of contact geometry to unseen objects. This is real-
ized through a Neural Physics Engine (NPE) based on trained mapping
functions. The NPE alters the solver in the physics-based simulation
to provide physical information regarding contact with deformation, a

capability that is absent in vanilla rigid-body versions.

This division ensures that the abstraction is specifically tailored to the distinct
physical requirements of action and perception for the robotic applications,

rather than applying a generic reduction.

1.5. Dissertation Contributions and Organization

This dissertation is organized to systematically validate the proposed abstrac-
tion framework through a logical progression from theoretical foundations to
specific methodological applications. Chapter 2 establishes the essential back-
ground by analyzing the structural limitations of current robotic simulation
paradigms. It contrasts the computational efficiency of rigid-body dynamics
engines with the physical fidelity of FEM to quantitatively define the simu-
lation gap. Furthermore, this chapter reviews the theoretical foundations of
model order reduction and data-driven physics learning to set the stage for the
specific abstraction strategies employed in subsequent chapters.

The methodological contributions are divided into two primary parts.

Part A focuses on the dynamics of the deformable body and encompasses
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Chapters 3 and 4. Chapter 3 establishes the theoretical baseline by deriving
an analytical kinematic model for a pneumatic origami manipulator [35]. This
study demonstrates the utility of geometric abstraction for real-time control
while identifying the inherent limitations regarding generality that motivate the
subsequent data-driven approach. Chapter 4 introduces the surrogate modeling
framework for deformable body dynamics. This work abstracts high-fidelity
finite element analysis into a fast rigid-body simulation to enable reinforcement
learning for soft robot control [36].

Part B focuses on the modeling of the soft contact interface and encom-
passes Chapters 5 and 6. Chapter 5 develops a bidirectional data pipeline
for vision-based tactile sensors that utilizes calibrated simulations to bridge
the visual and physical domains of contact [37]. Chapter 6 culminates in the
development of the NPE. This geometry-aware graph neural network (GNN)
replaces standard contact solvers to estimate high-dimensional finite element
information in real-time. This integration enables the simulation of vision-
based tactile sensors within rigid-body environments with physically accurate
deformation and force. The utility of this framework is validated by extracting
latent physical vectors to train a behavioral cloning policy for a real-world,
contact-rich peg-in-hole task.

Finally, Chapter 7 synthesizes the contributions of the dissertation and
discusses their broader impact on bridging the simulation gap. It argues that the
proposed data-driven abstraction framework effectively resolves the conflict
between computational intractability and physical fidelity, thereby removing
the primary bottleneck of data scarcity for deformable systems. The chapter
provides a critical analysis of current limitations and outlines future research
directions, including potential applications. Ultimately, this dissertation es-
tablishes a unified methodology for transforming high-fidelity continuum me-
chanics into fast, tractable data generation engines, providing the essential
pipeline required to train the next generation of contact-aware and physically

intelligent robots.



Chapter 2.
Backgrounds and Related Work

2.1. Simulation Gap in Physical Intelligence

The core challenge within the classical domain of rigid-body robotics is con-
sidered substantially resolved. This status is attributed to the equations of
motion for linked rigid segments, which are governed by Ordinary Differen-
tial Equations (ODEs). These equations are inherently well-conditioned and
computationally tractable, facilitating their efficient solution using recursive
algorithms that operate at super-real-time frequencies [18,32,33,38,39]. How-
ever, the transition to soft, deformable systems shows a significant divergence
between physical fidelity and computational tractability. Soft systems, charac-
terized by continuous compliance, infinite degrees of freedom, and non-linear
material properties, go against the simplifying assumptions of rigid-body dy-
namics. This sim-to-real gap represents the primary bottleneck hindering the
application of modern data-driven learning techniques to soft robotics [40,41].

The simulation gap establishes a binary tradeoff in current methodolo-
gies [42,43]. A simulation achieves either physical fidelity to real-world con-
tinuum mechanics or the computational speed required for the massive data
throughput of Reinforcement Learning (RL), but rarely both concurrently.
High-fidelity numerical methods, such as the Finite Element Method (FEM),
accurately capture the ground truth of deformation. Nevertheless, their cubic
complexity (O(N?)) with respect to the number of mesh nodes renders them
prohibitive for the millions of iterative steps essential for policy optimiza-
tion [44,45]. Conversely, analytical approximations and rigid-body physics
engines [29-31,46,47] furnish the requisite speed (> 1000 Hz). However, this
performance is attained by omitting essential soft interaction phenomena, in-

cluding distributed contact, viscoelasticity, and volumetric deformation. This



omission introduces a reality gap that leads directly to policy failure upon
transfer to physical hardware [45,48].

This chapter provides a rigorous analysis of the existing theoretical and
methodological landscape to justify the specific architectural choices proposed
in this dissertation: the use of surrogate modeling for efficient whole-body
dynamics (Part A) and a Neural Physics Engine (NPE) for high-fidelity contact
perception (Part B). By breaking down the limitations of state-of-the-art
approaches, ranging from classical modeling theories to modern differentiable
simulators, this study establishes that the proposed data-driven abstraction
strategies are not merely convenient optimizations but necessary structural
interventions required to solve the dual problems of action and perception in

deformable robots.

2.1.1 Data Scarcity Crisis in Deformable Interaction

The requirement for advanced simulation in soft robotics is directly driven
by the data scarcity crisis [22,25,49, 50]. Unlike rigid robots, which permit
direct control or moderate sim-to-real adaptation through precise modeling,
soft robots exhibit complex, history-dependent behaviors [10, 51]. Capturing
phenomena such as hysteresis [48], the Mullins effect [52], and viscoelastic
creep [53] necessitates extensive interaction data. In a rigid system, identifying
the inertial parameters of a link is a bounded problem. In a soft system, the
body itself changes shape, stiffness, and dynamic response based on its current
configuration and loading history.

Collecting the necessary volume of data to characterize these behaviors
in the physical world is often unfeasible due to several compounding factors.
First, material fatigue presents a severe limitation. Soft actuators, particularly
those based on pneumatic or elastomeric principles, degrade rapidly under con-
tinuous high-cycle operation [54]. A silicone chamber subjected to thousands
of pressurization cycles will exhibit altered stiffness and damping properties,
effectively rendering the data collected at the beginning of an experiment

invalid for the model trained at the end. A second critical consideration in-



volves the compromised safety of the platform during the exploration phase
of RL. The stochastic nature of RL algorithms often generates actions that can
rupture soft chambers, tear fabric constraints, or exceed the elastic limit of
the material. Consequently, this risk necessitates a safe, resettable simulation
environment to prevent hardware loss from catastrophic failures. Finally, state
estimation in the real world is extremely difficult. Obtaining ground-truth state
information, such as the full curvature of a continuum arm or the distributed
pressure map of a tactile sensor, requires complex external motion capture
systems that are prone to occlusion and calibration errors. Simulation, by con-
trast, provides privileged access to the full state vector, enabling the training
of state estimators and policies that would be impossible to supervise in the
physical domain. Consequently, the development of a simulator that is both
fast and physically grounded is not a luxury but a prerequisite for scaling robot

learning to deformable systems.

2.1.2 Division of Action and Perception in Deformation System

To rigorously address the simulation gap, this dissertation divides the problem
into two topologically and functionally distinct domains: the macroscopic
dynamics of the body (Action) and the microscopic mechanics of the interface
(Perception), as summarized in Table 2.1. While both domains are governed
by the same underlying continuum mechanics, they impose fundamentally

distinct requirements on simulation.

Action Domain : This domain concerns the volumetric deformation of the
robot’s structure. Here, the primary challenge is kinematic compatibility. To
enable effective control, the simulation must bridge the gap between infinite-
dimensional continuum physics and the low-dimensional state-spaces (e.g.,
generalized coordinates) required by modern reinforcement learning algo-
rithms. The goal is proprioceptive fidelity in predicting how internal actuation

translates to macroscopic configuration and inertial dynamics over time.
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Perception Domain : This domain concerns the deformation of the bound-
ary layer at the contact interface. Here, the primary challenge is geometric and
topological fidelity. Unlike the body, which requires global motion consistency,
the interface requires the resolution of high-frequency surface deformations,
local stress concentrations, and complex contact topologies to generate ac-
curate tactile signals. The goal is exteroceptive fidelity—mapping the local
imprint of the environment to a high-resolution sensory output.

As the following sections will demonstrate, state-of-the-art methods can-
not simultaneously satisfy both sets of requirements. A single solver optimized
for body dynamics is too coarse for tactile sensing, while a solver capable of
resolving tactile micro-geometry is computationally intractable for full-body
motion. This necessitates the proposed dual-architecture approach: a kine-
matic surrogate model for the action domain and a geometry-aware Neural

Physics Engine for the perception domain.

Criteria Part A (Action) Part B (Perception)
Target Domain Body Dynamics Contact Interface
Physical Phenomenon  Volumetric Deformation Boundary Deformation
Functional Goal Macroscopic Control Microscopic Perception
Primary Challenge Kinematic Compatibility Geometric Fidelity
Inductive Bias Kinematic Chain (Temporal) Graph Topology (Spatial)

Abstraction Method Surrogate Model (Rigid Links) Neural Physics Engine (GNN)

Table 2.1: Division of the abstraction framework into two domains.
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2.2. Modeling Deformable Continuum Physics

To effectively simulate a soft robot, one must first establish the mathematical
ground truth of its behavior. Unlike rigid bodies defined by six degrees of
freedom, a deformable body is an infinite-dimensional system governed by
the partial differential equations of continuum mechanics.

The motion of a deformable body is described by a mapping ¢ from
a reference configuration to a current configuration. The primary measure
of local deformation is the deformation gradient ' = Vx¢, which maps
infinitesimal line segments from the reference to the current state. For the
soft elastomers typically used in soft robotics and tactile sensors, the material
behavior is best described as hyperelastic. In hyperelasticity, the stress is
derived from a scalar strain energy density function W(F), which represents
the potential energy stored in the material per unit reference volume [55]. The
standard model for rubber-like materials is the Neo-Hookean model, where

the energy density is defined as
A
Y= g(ll =3) = uIn(J) + Z(In()))? 2.1)

where p and A are Lamé parameters, /; is the first invariant of the deformation
tensor, and J is the volume ratio. This constitutive law captures the non-
linear stress-strain relationships and quasi-incompressibility that are critical
for accurate force prediction but are notably absent in linear elastic models.
Since analytical solutions to these continuous equations are impossible for
arbitrary geometries, numerical discretization is required. The Finite Element
Method (FEM) serves as the gold standard for this spatial discretization [18].
By subdividing the continuous domain into a finite number of elements, FEM
approximates the governing equations as a system of ordinary differential

equations
MG+ Dq + fin(q) = fexi (2.2)

where g represents the nodal positions, M is the mass matrix, and f;,;(q) is

the non-linear internal force vector derived from the constitutive law. While
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physically faithful, solving this system requires implicit time integration to
maintain stability with stiff materials. This necessitates solving a large system
of non-linear algebraic equations at every time step using Newton-Raphson
iteration. The computational complexity of factorizing the resulting stiffness
matrix scales between O (N?) and O (N?) depending on the mesh topology. For
a high-fidelity simulation requiring thousands of nodes, this computational cost
renders FEM intractable for the massive throughput required by reinforcement
learning algorithms [21].

Alternative modeling approaches such as Cosserat Rod theory [56] or
Piecewise Constant Curvature (PCC) models [57] offer significant speed ad-
vantages by simplifying the robot geometry to a 1D curve or a series of arcs.
However, these methods suffer from a dimensionality mismatch. They assume
a rigid cross-section and cannot capture the volumetric deformation, bulging,
or complex contact patches that are essential for the interaction tasks consid-
ered in this work. Consequently, while useful for kinematic planning, they lack

the physical fidelity required for contact-rich policy learning.

2.3. The Fidelity-Efficiency Tradeoff in Physics-Based
Simulation

The inherent computational cost of high-fidelity continuum modeling has
created a bifurcation in robotic simulation paradigms. Existing simulators
generally fall into two categories that force a compromise between speed and
accuracy.

The first category consists of Rigid Body Dynamics (RBD) engines such
as MuJoCo [29], PyBullet [30], Drake [47] and IsaacSim [58]. These sim-
ulators model contact as a kinematic constraint preventing inter-penetration,
typically formulated as a Linear Complementarity Problem (LCP). The LCP
solvers are highly optimized for articulated systems, capable of resolving con-
tact forces for complex chains in microseconds (O (K) complexity where K is
the number of constraints). This speed has made them the default choice for

reinforcement learning. However, the rigid-body assumption fundamentally
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discards the mechanics of deformation. Contact is treated as a discrete point
rather than a distributed patch, and the compliance of the robot body is ignored.
This leads to a significant reality gap where policies trained in simulation fail
to transfer to the compliant real world.

The second category consists of high-fidelity soft body simulators such
as SOFA [40], NVIDIA Flex [59], or commercial FEM packages. These tools
use penalty-based methods or constraint solvers to resolve contact between
deformable meshes. While they capture the rich physics of deformation, they
are bound by the computational bottleneck of the underlying FEM solver.
Even with recent advances in GPU acceleration such as Isaac Sim [58], these
methods remain iterative solvers that must converge at every time step. This
iterative nature makes them orders of magnitude slower than rigid-body en-
gines and difficult to integrate into the massive parallel training pipelines
required for modern RL. Furthermore, standard FEM solvers are often non-
differentiable, making it difficult to automatically tune simulation parameters

to match real-world data.

2.4. Data-Driven Abstraction and Surrogate Model-
ing

To bridge the gap between the high fidelity of FEM and the high speed of rigid-
body simulation, this dissertation adopts a strategy of data-driven abstraction.
This approach posits that the essential dynamics of a deformable system can
be represented in a lower-dimensional space.

Mathematical Model Order Reduction (MOR) techniques, such as Proper
Orthogonal Decomposition (POD) [44], provide a formal basis for this ab-
straction. By performing Singular Value Decomposition (SVD) on a snapshot
matrix of FEM deformation data, one can identify a subspace of dominant
deformation modes. Projecting the full-order dynamics onto this subspace sig-
nificantly reduces the number of degrees of freedom. However, standard MOR
methods still require evaluating non-linear forces in the high-dimensional

space or using complex hyper-reduction techniques, and the resulting reduced
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models are not natively compatible with the standard rigid-body control stacks
used in robotics.

This motivates the use of learned Surrogate Models. Instead of mathe-
matically projecting the equations, a surrogate model uses machine learning
to approximate the function mapping from the current state and action to the
next state. By training on high-fidelity FEM data offline, the surrogate learns
to emulate the physics of the continuum body. For the specific domain of
body dynamics (Part A), this dissertation proposes mapping the continuum
deformation to a Virtual Kinematic Chain. This involves training a network
to predict the configuration of a pseudo-rigid body model that matches the
FEM deformation. This specific abstraction preserves the kinematic structure
required by rigid-body physics engines, allowing the soft robot to be simulated
with the stability and speed of an articulated rigid system while retaining the

deformation characteristics learned from the ground truth.

2.5. Simulation for Vision-Based Tactile Sensing

While surrogate models address the macroscopic dynamics of the body, the
simulation of physical interaction also requires modeling the microscopic me-
chanics of the contact interface. This challenge is epitomized by Vision-Based
Tactile (ViTac) sensors such as GelSight [12] and DIGIT [60]. Simulating
such sensors presents a unique dual challenge which requires solving both the
mechanical contact problem to determine the elastomer shape and the optical
rendering problem to generate the camera image. Existing simulators can be
categorized into four paradigms based on their approach to this problem.
Graphics-based simulators such as TACTO [61] and Tactile Gym [62]
prioritize speed by abstracting mechanics into geometric penetration depth.
They utilize standard rendering pipelines to generate depth maps that mimic
tactile readings. While highly efficient (> 100 Hz) and suitable for large-scale
reinforcement learning, they lack a true force-deformation constitutive model,
failing to capture complex mechanical effects like shear or friction-induced

bulging. Similarly, FOTS [63] optimizes the rendering pipeline for speed but
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relies on simplified shading approximations.

Data-driven and example-based approaches such as Taxim [64] avoid
explicit physics solving by leveraging calibration data. Taxim constructs poly-
nomial lookup tables mapping surface gradients to pixel intensities based
on real-world examples. TacSL [65] provides a library for learning visuotac-
tile skills, often using data-driven approximations to bridge the gap between
simulation and reality. These methods achieve high perceptual fidelity for spe-
cific sensor configurations but often lack the generalizability to model novel
interactions or unseen object geometries outside their calibration distribution.

Physics-based FEM approaches aim for mechanical fidelity. DiffTac-
tile [66] integrates a differentiable FEM solver with a Neo-Hookean con-
stitutive model, allowing for system identification via gradient descent. Twin-
Tac [67] adopts a digital twin approach, synchronizing real-world sensor data
with FEM simulations to train a high-fidelity virtual counterpart. While these
methods provide the most accurate representation of contact mechanics, they
are bound by the computational latency of iterative solvers (O (N?)), limiting
their throughput for the massive-scale data generation required by modern
robot learning.

Finally, neural and generative approaches explore bypassing explicit sim-
ulation pipelines. NeuralFeels [68] utilizes neural fields to encode contact
geometry for online perception and SLAM, while generative methods like
Sim2Surf [69] use diffusion models or GANs to hallucinate tactile images
from visual cues. While promising for perception tasks, these end-to-end gen-
erative models often lack the explicit physical constraints required to serve as

a robust ground truth for control policy training.

2.6. Rationale for Method Selection

The selection of specific abstraction architectures for Part A and Part B is
driven by the distinct computational constraints and inductive biases required
for their respective tasks.

For Part A, the primary constraint is solver compatibility. Modern rein-
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forcement learning environments and control stacks rely on rigid-body physics
engines that optimize collision detection for articulated kinematic chains. A
generic dimensionality reduction would destroy this kinematic structure, ren-
dering the model incompatible with standard contact solvers. Therefore, we
implement the Surrogate Model, which explicitly maps continuum deforma-
tion into a Virtual Kinematic Chain. This preserves compatibility with fast
LCP solvers while capturing the compliance of the soft body through learned
joint stiffness parameters.

For Part B, the primary constraint is geometric generalization. A tactile
sensor must accurately predict deformation for arbitrary, unseen object geome-
tries that were not present in the training set. Standard deep learning models
like CNNs or MLPs tend to overfit to the global object shapes seen during
training. To address this, we implement the Neural Physics Engine (NPE) us-
ing Graph Neural Networks (GNNs). This architecture imposes a topological
inductive bias, forcing the model to learn the local, node-to-node rules of
force propagation. By learning the local physics rather than global shapes, the
GNN-based NPE ensures that the simulation generalizes effectively to novel

contact interactions.
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Chapter 3.
Analytic Model of Deformable Robot

3.1. Motivation

This chapter established an analytical modeling representation for modeling
deformable systems. This research selected a deformable manipulator as its
testbed, specifically focusing on an even more difficult class of these systems:
a collapsible manipulator based on origami principles. The unique, nonlin-
ear folding mechanics of origami structures present a significant modeling
challenge, making them an ideal subject for investigating the limits of analyt-
ical tractability and motivating the development of a simplified, yet effective,
kinematic model for real-time control. This work is based on the previous
publication, “Model-based control of proprioceptive origami actuators for
pneumatic manipulation” published in the International Journal of Robotics
Research in 2025 [35].

Origami-inspired robots have emerged as a novel and versatile cate-
gory within the field of soft robotics, leveraging the principles of traditional
Japanese paper folding to create simple and lightweight structures capable
of complex three-dimensional movements [70-72]. This innovative approach
has found applications across diverse sectors, including manufacturing [73],
biomedical devices [74], and space exploration [75], where their unique prop-
erties are particularly beneficial. The inherent compliance and adaptability
of origami-utilized soft robots also make them ideal for safe interaction with
humans and delicate surroundings [76].

Despite these advantages, the control of origami robots poses significant
challenges due to the complexities involved in accurate modeling of their kine-
matics and dynamics [51,77]. The nonlinear nature of folding mechanisms,

coupled with variations in material properties, complicates the prediction and
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control of these systems [78, 79]. Researchers have attempted to overcome
these hurdles through various model-based control strategies, including finite
element analysis (FEA) [80], lumped parameter models [81], and machine
learning techniques [82]. Furthermore, geometric and strain energy-based
modeling approaches have been widely employed to describe origami struc-
tures [83, 84]. These methods have been particularly effective in capturing the
deformation characteristics of Yoshimura-patterned actuators, as seen in prior
studies [85]. However, these approaches often assume simplified mechanical
approximations that limit their applicability to real-time control. Moreover,
inverse kinematics (IK) solutions in origami-inspired manipulators are typ-
ically formulated either through rigid-link approximations [85] or iterative
numerical optimization [86], which increase the computational complexity.

To address issues in heavy computation and real-time state estimation,
researchers have explored the use of proprioceptive soft actuators capable of
detecting their own internal states without adding external sensors. Specif-
ically in soft robots, these systems are designed to detect the deformation
or motion states of the actuators directly, providing an alternative to relying
solely on modeling [87-89]. Such proprioceptive actuators have self-sensing
mechanisms, which typically employ resistive [90-93], capacitive [94,95], or
optical [96-98] sensors to measure strain, orientation, or bending curvature.
Although this self-sensing capability offers unique advantages, fabrication can
be challenging. Accurate measurement of the configuration of a propriocep-
tive soft manipulator often requires multiple sensors, leading to difficulties
in fabrication and calibration. These requirements can result in a system that
is bulky and complex, with a need for a wide sensing range and robustness
against noise [76,99].

This study aims to tackle the dual challenges of computational complexity
in model-based control methods and the difficulties in precise configuration
estimation of soft origami manipulators. The approach encompasses the de-
velopment of a highly functional soft manipulator utilizing solely origami

structures, coupled with the derivation of a simplified kinematic model. The
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work begins with the design of modularized, pneumatically driven bellow-
type actuators incorporating an origami cylinder structure with an embedded
self-sensing mechanism at each module. The use of cylindrical origami pat-
terns, such as the Yoshimura or Kresling design, brings two principal benefits
which are the intrinsic functionality of the structure itself and a significant
simplification in the kinematics of motion [100, 101]. The origami cylinders
are characterized by elastic properties that enable axial collapse along prede-
fined folding lines, akin to a spring mechanism [102—-104]. This feature allows
for broad, compliant movements suited for various robotic systems, such as
grippers [105, 106], manipulators [86, 107], and locomotive robots [108, 109].
Furthermore, when pneumatically powered, origami cylinders provide a large
range of motion, significant force, and ease of reconfiguration, increasing their
versatility [110-112]. However, despite the uniqueness of the origami cylin-
der, few methods are practically available to estimate its kinematics when
actuated pneumatically. Much of the research analyzes the origami cylinder
in a static manner, using non-linear FEA [113], post-buckling analysis [114],
and numerical simulations [115, 116] that are computationally expensive for
dynamic scenarios.

Therefore, a simplified kinematic model for the soft manipulator is pro-
posed. The main idea of this model is to incorporate the essential assumptions
and features from prior works to simplify the structure’s analysis [83,103,117].
The proposed model establishes a mapping between the actuator’s 3D con-
figuration, the input signals, and any applied external loads. This allows for a
reduction in the complexity of the required sensor system to a single, compact
length-sensing unit. By integrating this simplified model with the actuator’s
proprioceptive characteristics, this approach effectively controls the manipu-
lator in a synergistic, model-based, and sensor-informed manner.

In summary, this study presents three main contributions. First, a mod-
ularized pneumatic actuator is designed and fabricated using the Yoshimura
origami cylinder, featuring proprioceptive functions to measure its configura-

tion. These modules are integrated into an extended soft manipulator system.
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Second, a simplified kinematic model for the origami cylinder is proposed,
enabling accurate pose estimation in conjunction with its self-sensing mecha-
nisms. This derived model uses a minimal proprioceptive sensing mechanism,
simplifying the control strategy while maintaining high performance. Finally,
a continuum robot made of multiple actuation units called origami cylin-
der modules (OCMs) is demonstrated in various applications, such as object
picking, manipulation, and path-planning tasks, highlighting their potential in

practical use cases.

3.2. Robot design

This section describes the proposed design of a soft manipulator that utilizes
pneumatically actuated origami actuators, as depicted in Figure 3.1. The ma-
nipulator was constructed using multiple Origami Cylinder Modules (OCMs),
each exhibiting the characteristic properties of the Yoshimura cylinder to en-
able both linear and bending deformation. The fabrication process for the
OCM, which uses polyethylene terephthalate (PET) films and polypropylene
(PP) sealing tapes, is briefly illustrated in Figure 3.2-(A).

Figure 3.2-(B) presents the design of the OCM and its integrated sensing
mechanism. A Hall effect sensor (SS41, Honeywell) and a neodymium magnet
were installed within the hollow air chamber of the cylinder for the purpose
of detecting longitudinal displacement. This sensor module was designed to
be compact and not to interfere with the existing structure, providing a linear
response corresponding to the distance between the sensor and the magnet.
Each OCM can actively contract and extend within a range of -60% to 60%
of its 40 mm initial length and can bend up to 1.5 radians. A single OCM
weighs approximately 25 grams, a lightness attributable primarily to its thin
PET film base material, with most of the weight coming from the 3D printed
components.

The complete continuum robot is composed of extended OCMs that are
arranged in parallel, as shown in Figure 3.1. To facilitate a more straight-

forward kinematic analysis, the design adopts a piecewise constant curvature
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_______________

_____________

Continuum Origami Cylinder

Manipulator Module (OCM)

Figure 3.1: Continuum robot, comprising two segments of origami cylinder
modules (OCMs). The OCM is capable of generating both linear and bending
motions. The characteristics of these two distinct deformation modes decou-
pled and analyzed.

(PCC) approach, a common strategy for continuum robots suggested in pre-
vious studies [57, 80]. In this configuration, the OCMs were connected by a
radial frame, as shown in Figure 3.1, to establish a uniform curvature across
each segment of the robot. The design incorporates four extended OCMs.
Three of these were strategically positioned in an equilateral arrangement,
which was essential for generating the actuation motions of the module. The
fourth cylinder, located at the centroid of this triangle, serves as a structural
backbone that adds stiffness to the manipulator [118] and encloses connecting

components like electric wires and pneumatic tubes.

3.3. Modeling the Origami Cylinder Module

The Origami Cylinder Module (OCM) presented in this work is composed
of a cylindrical chamber fabricated with the Yoshimura pattern. While the
Yoshimura cylinder is generally known as a volumetric origami structure that
isrigid when properly folded [119], it also exhibits the capacity to deform under
specific conditions if constructed from materials with low stiffness [120, 121].
The deformation of the cylinder along its crease lines and thin facets occurs

as a result of axial compression, extension, and bending [122]. Furthermore,
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the Yoshimura cylinder possesses considerable torsional stiffness, a property
that allows its twisting motion to be neglected in the subsequent analysis [86].
The primary objective of the modeling is to analyze the kinematics of the
Yoshimura cylinder based on its volumetric origami characteristics. Given its
linear volume reduction, the axial strain, denoted as €, can be defined as the
ratio of the change in axial length (/ — /) to the original length (/).
-1

€ = o (3.1)

The initial length /o is a design parameter determined when the origami pattern
is created. The Yoshimura cylinder is also capable of bending, which results
in a bending angle ¢, a curvature «, and a length of the neutral axis for
bending s. Therefore, the overall configuration C of the actuator includes these
bending variables alongside the axial strain €, as illustrated in Figure 3.1. The
controllable inputs to the system are the internal pressure of the compressed
air P and the external load 7, where T accounts for both force F and moment
M. The aim of this chapter is to derive the relationship between these inputs

and the resulting configuration, which is expressed as the kinematic function

focm-
Text = fOCM(P, C), (3.2)

In this function, C represents the geometric information of the Yoshimura

cylinder that determines its configuration, as shown in Figure 3.3-(A).

3.3.1 Design Parameters of the Yoshimura Cylinder

The kinematic behavior of the Yoshimura cylinder, which is shown in Fig-
ure 3.3-(A) with its characteristic repeated patterns, is affected by several
design parameters. The smallest foldable unit within these patterns is iden-
tified as a single layer, constructed by the tessellation of identical isosceles
triangles. For the OCM design, it is assumed that all N layers are repeated and
experience uniform deformations. This single layer therefore plays a crucial

role in determining both the range of motion and the overall configuration of
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Figure 3.2: (A) Fabrication of a pneumatic chamber based on the Yoshimura
cylinder pattern. This pattern was engraved on a 100 um polyethylene tereph-
thalate (PET) film using the laser CNC machine (Trotec Speedy 300, Trotec)
and sealed with 50 um polypropylene (PP) tape to create an airtight chamber.
The cylindrical shape was formed, and then the Yoshimura origami pattern
was folded. (B) 3D-printed air sealing caps and neodymium magnet located
inside the folded Yoshimura pattern. A hall-effect sensor and a neodymium
magnet were used to measure the displacement of a single layer of the actuator.

(A

-

Facet
Deformation

Truss Model

Single Layer L

Figure 3.3: (A) Configuration of the Yoshimura origami cylinder and the
definition of a single-layer. (B) Yoshimura origami cylinder treated as energy-
conserving, with each vertex represented as a node and each edge as an
elastic bar element with a single DOF. Rotational springs simulate hinge
deformations, accounting for the nonlinear facet behavior.

the actuator. Each single layer is composed of an isosceles triangle defined by
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two parameters which are the length of its base side (L) and the angle of its
side (6,), as depicted in Figure 3.3-(A). Table 3.1 provides a summary of the

design parameters that are considered in the analysis.

L 30 mm

Ly 40 mm

04 /8 rad
Design Parameters | N 10

np 40

np 32

w 13¢g
Fitting Coefficients ke 1.3 N/m

kn 0.1 N/m

wy  238¢g

Manipulator d 60 mm
Sc 210 mm

Table 3.1: Design parameters and specifications.

3.3.2 Assumptions for Pattern Analysis on the Yoshimura Origami Cylin-

der

Three assumptions are made to simplify the characterization of the actuator.
First, the actuator is considered to be a conservative system, which allows
the application of the virtual work principle to relate the external force to the
configuration of the actuator [123]. This approach facilitates a straightforward
relationship between the applied forces and the resulting deformations. Second,
a uniform stress distribution across the entire cylindrical structure is assumed,
which leads to consistent deformation across all layers, whether through linear
compression, extension, or bending. Given that the cylinder is composed of
repeated single layers, the entire structure can be conceptualized as a stack of
multiple layers, as shown in Figure 3.3-(A). Consequently, the kinematics of
this single layer can be uniformly applied to the entire structure. Lastly, for
analytical simplicity, the cylinder is simplified as a truss structure, serving as
an equivalent model.

As illustrated in Figure 3.4-(A), a single layer forms a polyhedron consist-

ing of 16 isosceles triangles, which creates a closed structure with 12 vertices

26



and 40 edges. Figure 3.3-(B) depicts this abstraction of the Yoshimura cylinder
model, where the vertices and edges are represented as nodes and elastic bar
elements, respectively. Each edge is modeled as an elastic bar with a single
degree of freedom (DOF) that can store strain energy through deformation.
Additionally, rotational springs are used to simulate the hinges of the origami
to capture the elastic deformations along the crease lines. The potential energy
was calculated based on the amount of rotation between the neighboring facets
that share each hinge [124]. Moreover, due to the nonlinear deformation expe-
rienced by the Yoshimura cylinder as a result of its rigidity, previous studies
dealing with volumetric origami structures have incorporated additional ele-
ments to account for facet deformation [83,103,115]. Following these results,
some basic features were also adopted in the simplified model, as shown in
Figure 3.4-(A). The figure details the arrangement of 12 nodes (ay; ~ a34) and
an additional four nodes (m; ~ my4) added at the midpoint of the horizontal
edges to simulate facet deformation. The truss model employs the properties
of virtual materials, with two defined stiffness coefficients, k; and kj, rep-
resenting the axial and torsional resistance, respectively, to accurately reflect
the kinematics of the actual structure. Based on the first assumption that the
actuator behaves as a conservative system, the total potential energy stored in

the origami cylinder can be expressed as follows.
Miorar = Hpar + Hhinge —Iyork, (33)

Here, each term represents a different contribution to the system’s energy.

* Il;,: The strain energy of the bar elements accounts for the elastic
deformation along the edges of the origami structure. This strain energy
is calculated based on the elongation or compression of the bar elements,
which is directly related to the nodal displacement and the geometric

configuration of the Yoshimura cylinder.

* Iljinge: Therotational energy stored in the crease lines reflects the energy

required to rotate the facets relative to each other. This is determined by
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the change in the dihedral angles between the adjacent facets, computed

from the nodal positions and the geometric constraints of the pattern.

* I1,,,,«: The work done by the applied pressure accounts for the external
force applied to the structure. The work is calculated as the product of

the applied pressure and the change in volume as the cylinder deforms.

The calculation of the total potential energy also incorporates the principle
of virtual work during deformation, which accounts for changes in the relative
positions of the nodes and the dihedral angles between facet pairs.

Given the assumption of uniform deformation across the structure, the
analysis of potential energy focuses on determining the nodal displacements
within a single layer. The geometric constraints inherent in the Yoshimura
pattern were used to calculate the position and deformation of each node by
solving a system of multi-variable equations.

To clarify further, the first segment of the kinematic derivation focuses on
the axial deformation of the Yoshimura cylinder, which is a purely linear de-
formation, as depicted in Figure 3.3-(A). The second segment of the derivation
focuses on bending deformation, which can occur simultaneously with axial
deformation in the Yoshimura structure. To ensure a comprehensive analysis,
these two types of motion are treated in separate analytical processes, allowing

a detailed examination of each mode of deformation.

3.3.3 Kinematics Modeling of the Yoshimura Cylinder

Axial Kinematics The axial deformation kinematics of a single layer in the
Yoshimura cylinder are determined by correlating the axial force (F) with the

input pressure (P) and the strain (¢), as represented in the following function.
F, =Fs(e, P). (3.4)

Here, F, is a function derived from the three potential energy components

outlined in Equation 3.3. The potential energy stored within the bar elements,
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®

Figure 3.4: (A) Nodes indication of the single layer and linear deformation
when axial force (F;) applied (left) and the brief deformation configuration
according to the strain € (right). By the definition, € can vary from -1 to
the bounded maximum value € that is the geometric limit. (B) Bending
configuration of the single layer when moment M is applied and with bending
angle ¢/N. The bending angle can be expressed with the parameter e and
has a range from 0 to /2.

HA

bar is expressed as

np 1
M, () = N ) =ks (Li(e) - Li(en))” (3.5)
i=1

where €y represents the initial strain when the cylinder is unloaded and at
a neutral state. This type of strain energy based analysis is a well-defined
method as shown in prior works on the Yoshimura origami structure [83].
Due to the geometric constraints of the Yoshimura cylinder, the parameter € is
theoretically bounded in the range € € [—1, €*], where €* is a value related to
the height of the constituent isosceles triangle, L tan 8, (see Figure 3.3-(A)).
As depicted in Figure 3.4-(A), there are a total of n; bar members shown
in a three-dimensional coordinate system. The length of the i member is a
function of € and is expressed as L;(€). Assuming a uniform load distribution
across each i’ member, the potential energy is calculated with a constant
stiffness per unit length k;,. The length of each bar element at a given strain (€)
can be calculated from the distance between each node, based on the geometric

constraints of the Yoshimura cylinder.
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The subsequent term corresponds to the potential energy of the rotational
hinges, which arises from the variation in angle between the facets. This energy

can be expressed as
A < 1 2
Mje(€) = N ) skiLi(€)16:(€) — b;(e0) (3.6)
i=1

A dihedral angle, 645, is defined as the angle between two adjacent facets in a
single layer, as shown in Figure 3.3-(B). Within a single layer, there are a total of
nj, dihedral angles that can be defined by the combinations of two neighboring
facets connected at each hinge. Similarly to Equation 3.5, the strain energy
resulting from this change in angle was considered for the folding lines. The
coeflicient representing the rotational stiffness per unit length is denoted by &,
and is multiplied by the length of each hinge member L;(e) when calculating
the total potential energy.

The final component considers the change in volume due to the applied
pressure (P) inside the actuator. The volume of a single layer under a given
strain € is denoted as V4 (€) and can be calculated from the nodal positions.
Hence, the virtual work resulting from the pressure P can be explicitly derived
as

M}, (€, P) = PAVy = P(Va(€) = Va(eo)), (3.7)

which is a term linearly proportional to the pressure P.

Ultimately, the three terms that comprise Equation 3.3 can be expressed
using the design parameters (N, 8,4, L, and lp) and two fitting parameters (k
and k). Incorporating Equations 3.5, 3.6, and 3.7 into Equation 3.3 allows the
total potential energy to be articulated as a function of strain (€) and pressure
(P) as follows.

(e, P) =M, () + ). (€) —TIA _ (e, P). (3.8)

bar hinge work

The axial force is equal to the derivative of the axial potential energy with

respect to the variable €, under the assumption of energy conservation. There-
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Figure 3.5: (A) Cross section of a single layer under pure bending. Additional
variables (¢, t>, and #3) are defined and depicted in the cross section of the
single layer. These variables are used to derive the relation between the con-
figuration parameters (¢, «, and s) with the length /. (B) Numerical volume
variation by the bending angle (¢/N) calculated for each initial strain (&)
from -1 to €*, as shown with the color code. The larger initial strain gives the
larger variation. (C) Backbone length (s) of the single layer maintained the
same as the initial value [, during bending. The solid line shows the numerical
calculation of s compared with the initial length /5/N of the single layer. The
maximum deviance was 0.183 mm at /j)/N = 6 mm, where the strain was the
maximum €.

fore, the kinematics relating the net axial force (F),) to the strain (€) can be

expressed as
Ol (e, P)
Oe

which maintains the form presented in Equation 3.4.

F.(e,P) = :=F4(e, P), (3.9)

Bending Kinematics When a moment is applied to the Yoshimura cylinder,
it undergoes bending deformation. The bending of a single layer is charac-

terized by two configuration variables: its neutral axis length (s/N) and its
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bending angle (¢/N). We define a function Fp that maps these configuration

variables to the moment in a single layer:
M =Fp(¢/N,s/N). (3.10)

Assuming identical deformation across all N layers, a moment M applied to
the entire cylinder is distributed uniformly, such that each layer experiences
the same moment and a bending angle of ¢/N. Due to the cylinder’s structural
symmetry, each layer exhibits pure bending. Figure 3.4-(B) illustrates a single
layer bending in the y-z plane, where the nodal displacements determine the
bending angle ¢/N. For example, nodes aj; and a4, initially located at the
same z-coordinate (z = ly/2N, determined by the initial axial strain), move
symmetrically during bending. Defining this z-coordinate deviation magnitude
as ¢/, their new coordinates become (lo/2N +61) and (ly/2N—61), respectively.
The variable 6/, which itself depends on the bending angle ¢/N and neutral
axis length s/N, is used to concisely express all nodal positions. As depicted
in Figure 3.5-(A), the geometric relationship between the configuration (¢, s)
and ¢/ can be derived by introducing additional angles and edge lengths for

calculation. Two key angles in the y-z plane are defined as

IN —
01(61,1y) = sin”! (lO/N—él) and

Ltan6,
3.11
10/2N+5l) ( )

0,(61, 1y) = sin™!
2(8L. 1o) = sin (Ltan@d

Using these angles, the additional edge lengths #; ~ #3 can be expressed as

11(81,1y) = Ltan 64 cos 61,

t2(81,1y) = Ltan 6,4 cos 6, and (3.12)
Ltan 8, sin 6,

t3(5l, l()) = W
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These variables, in turn, allow for the derivation of the bending angle and

curvature of the N-layered cylinder as

Ltan 6, sin 6
¢(51,Ip) = 2N tan™! (%) 3.13)
3
|
R((sl,lo) =1 +t3+L/2, and K(él,l()) = E (314)

Assuming uniform curvature across the layer, the neutral axis length s (i.e.,

the backbone length) is the arc length:
s(ol,lp) = R¢. (3.15)

Based on Equations 3.13-3.15, all configuration parameters for a single
layer can be expressed as functions of 6/ and /y. The feasible range of the
bending angle is also determined by geometric constraints related to the layer’s
initial length, /y. For instance, the z-coordinate of node ay4 cannot become
negative, as this would imply a geometric collision with the adjacent layer.
Therefore, the feasible range of 6/ is 0 < 6/ < ly/2N.

A notable result here is that both the initial length /y and the neutral axis
length s are independent of the bending angle ¢/N. We verified this char-
acteristic numerically by calculating all nodal positions and confirming they
satisfy Equation 3.15. As shown in Figure 3.5-(C), once the initial layer height
lo/ N is determined by the axial deformation (later derived in the inverse map-
ping section), the neutral axis length s remains constant throughout bending,
with a maximum numerical error of only 0.183 mm. This result indicates that
bending can be decoupled from axial deformation; consequently, pressure and
axial force primarily affect the longitudinal length /y (and thus s), while the
moment primarily affects the bending angle ¢.

The potential energy stored in the virtual bars and hinges can be calculated
from the nodal coordinates, which are expressed in terms of ¢/, using the same
geometric constraints as the axial case. As the nodes are displaced, the facets

deform, altering the dihedral angles. The potential energy contributions from
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the bars (ITY ), hinges (IT? ), and the work done by pressure (IT? ) are

hinge”’”
formulated as
ne (s, 1p) —NZ ~kp (Li(S +Lo) — Li(lp))*, (3.16)
i=1
hznge(él ZO) -
(3.17)
NZ 51<;,L,~(51)|9i(51 +1) —
i=1
ne  (61,10) = PAV(5l, l). (3.18)

As with the axial case, these formulations sum over all relevant facet pairs and
their corresponding dihedral angles. Here, AVp denotes the volume change
induced by bending. The layer’s volume is calculated numerically via tetrahe-
dral decomposition based on the nodal positions [125]. Figure 3.5-(B) plots
the volume change AVp as a function of the bending angle (¢/N) for several
initial strains (&p). The feasible bending range (¢/N) increases with the initial
layer length (ly/N), allowing for more significant volume changes. Unlike the
axial case where AV, was formulated explicitly, the bending volume change
AVp is calculated numerically.

Eventually, the total potential energy stored in a single layer due to the
bending moment is given by

% (e, e0) =T, +117, ~—TI5

hinge work*

(3.19)

For notational consistency with the axial kinematics, 6/ and [y are converted
to strains d€ and € using Equation 3.1. The actuator’s bending moment is then
derived by differentiating Equation 3.19 with respect to the bending angle ¢

from Equation 3.13:
oT18(S€, )

0¢(d€,€))

In Equation 3.20, derived moment was denoted as M. This distinction is

M (e, ) = (3.20)
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necessary because our target kinematic relationship, Equation 3.10, directly
maps the configuration variables (¢, s) to the moment. Since the derived
parameters are functions of the strains (J¢, €y), an equivalence that connects

the derived moment function can be plugged into the target form:
M(¢,s) = M(3e, &), and Fz(¢,s) := M(8,s). (3.21)
This aligns the derived model with the initial formulation in Equation 3.10.

Integrated Kinematics Based on the geometric constraints and structural
assumptions established previously, the kinematics for linear and bending
deformations were decoupled into two distinct modes of configuration change.
The axial height, [y, or the initial strain, €y, was found to be determined
exclusively by the axially applied force component F, and the input pressure P.
After this axial configuration is set, an applied moment M causes the cylinder
to bend, which in turn alters configuration variables like the bending angle
¢ and the backbone length s. When an external force fex, = [Fy, Fy, F T
is applied to the tip of the Yoshimura cylinder, the axial force component
F, affects the axial elongation, whereas the lateral components F, and F)
contribute to the generation of a moment. The resultant moment is considered
only in the direction that causes the cylinder to bend, as represented by M
in Equation 3.21. This is based on the assumption that twisting moments are
negligible and the bending orientation is nonspecific due to the cylinder’s

symmetrical geometry. Consequently, the external load can be represented as

F
Tor = | . (3.22)
M
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Since both components of 7.,; have been derived in Equations 3.9 and 3.21,

the kinematics can be integrated into a unified expression.

Fa(e, P)
ext — = P,C . 3.23
T Fp(6. 5) focu(P,C) (3.23)

This results in a comprehensive formulation consistent with the target kinemat-
ics model in Equation 3.2. The configuration parameter C therefore effectively
encapsulates €, ¢, and s, providing a unified method to describe the kinematics

of the Yoshimura cylinder.

3.3.4 Inverse Mapping using Lookup Table Methods

To efficiently compute the forward and inverse kinematics (FK/IK) of the
origami manipulator for real-time control tasks, a data-driven approach that
utilizes lookup tables (LUTs) was employed. Based on the forward kinematics
mapping function in Equation 3.23, an inverse mapping function was derived
to estimate the actuator’s deformation when the input pressure and external
loads are given.

The inverse kinematics of the OCM can be formulated with two inverse
functions. The first, IF*‘L, maps the axial force to the corresponding strain (€),
while the second, F;, maps the bending moment to the bending configuration.
These mappings are not analytically tractable due to the complex interaction
between the structural elasticity and the pneumatic actuation. Instead, a dataset
was precomputed through high-fidelity simulations, which created a structured
LUT to allow for rapid inference during runtime.

For each OCM, a dataset of (F;, P, €) tuples was generated over fine

intervals, enabling efficient interpolation for the inverse axial mapping.
e =F,(F., P). (3.24)

Similarly, for the bending estimation, precomputed values for the bending
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angles ¢ were stored to form the inverse bending map.
¢ =Fs'(M,s). (3.25)

Using these inverse mapping functions, for a known external force and pres-
sure, the corresponding strain and bending parameters can be directly retrieved
or interpolated from the table. Furthermore, these functions made it possible
to simplify the kinematic modeling of the full manipulator and to conduct

model-based control in real time.

3.3.5 Model of the Origami Manipulator

The kinematic model for the Yoshimura cylinder, which was derived in the
preceding sections, provides a foundational connection between the individual
OCMs and the soft continuum manipulator constructed from them. While es-
tablished forward kinematics (FK) and inverse kinematics (IK) for continuum
robots are well developed [90, 126], their use is predicated on having prior
knowledge of the mapping function that defines the relationship between an
actuator’s length and its corresponding input signals. Tendon-driven actuators,
for example, often estimate their lengths from multiple encoder measurements,
whereas pneumatic actuators lack the ability to directly measure this length
information without the use of additional modeling or sensors. Therefore, the
derived kinematic model (Equation 3.23) becomes an essential component for
estimating the state of the continuum manipulator.

This continuum robot is designed with multiple segments, or trunks,
where each is powered by three independently operated actuators, as shown in
Figure 3.6-(A). The FK model for such a manipulator involves mapping the
length of each actuator (/1 ~ [3) to the overall configuration of the manipula-
tor [90,126]. As depicted in Figure 3.6-(B), a minimal set of three parameters is
required to determine the configuration of a single trunk. These are the length
of the backbone (S.), the bending angle of the trunk (6.), and the direction
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angle of the bending axis (¢.), which are calculated as follows.

1
&:§m+b+m,

2R+ B =il - bl — s

6, 3d , and (3.26)
3+ 1 =2
¢, =tan”' [ Z—"—T].
‘ ( V3(l, - I3) )

By assuming the PCC condition for each segment, which implies that no
buckling or twisting occurs and that each trunk possesses a unique curvature,
it becomes possible to uniquely determine the position and orientation of
the tip at the moving platform [80]. This allows the special Euclidean group
SE(3) transformation from the base frame { B} to the moving frame {S} to be
calculated using the configuration parameters detailed in Equation 3.26 (see
Figure 3.6-(C)).

Spatial Configuration Estimation of the Origami Manipulator The origami
manipulator is composed of multiple extended OCMs, as shown in Figure 3.1,
with each undergoing complex deformation when subjected to applied forces
and moments. In contrast to conventional rigid-link manipulators, the actuator
lengths in pneumatic continuum manipulators are not directly controlled. This
necessitates an inverse kinematics (IK) formulation to determine the configu-
ration from the input pressures (P) when an external load (7.,;) is applied.

Each extended OCM is constructed from three serially stacked OCMs
arranged in a column, with three such columns positioned in parallel at 120°
intervals. A consequence of the PCC assumption is that all OCMs within
the same column share an identical internal pressure (P), an identical strain
response, and an identical bending angle (¢¢), which ensures uniform defor-
mation across the manipulator.

Following the inverse mapping formulation from Equations 3.24 and 3.25,

the configuration of the origami manipulator is derived. This is accomplished
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Figure 3.6: (A) Continuum origami manipulator with OCMs. (B) Configura-
tion information of the origami manipulator, showing two different frames: the
fixed base coordinate B; and the moving frame S for each j th parallel manip-
ulator segment. The introduced manipulator in this paper has three segments,
indicated by dashed lines. (C) Simplified drawing the ;" segment, with three
pressure inputs (P to P3) independently controlling the three actuators. The
mass load from neighboring segments (W;) and the external loads (7;) are
accounted for in the kinematics. The actuator lengths (/;;) can be estimated
using the derived inverse mapping functions.

by extending the kinematic model of a single OCM while also accounting for

the propagation of loads throughout the stacked structure.

Force and Moment Equilibrium for the Origami Manipulator Each ex-
tended OCM is composed of three actuators positioned at 120° intervals
around a central backbone. The deformation of each individual actuator is
dependent on the applied external force (7.y;), the internal pressure (P), and
the constraints imposed by any neighboring modules.

As illustrated in Figure 3.6-(C), the total force equilibrium at the tool
center point (TCP) for the j-th floor of the manipulator is given by the following

equation.
3

Foj+Foj+Fa,=F+ Wi+ ) W (3.27)
k=j+1

Here, F, represents the external force applied at the top plate, while W;
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accounts for the gravitational weight contribution from the current and all
upper floors. The moment equilibrium equations, which consider the external

moments M, and My, are formulated as

M, = d(Fz,;sin 120° + F3 jsin240°), and
My = d(F;1j — F,j cos 120° — F 3 j cos 240°).

(3.28)

The torsional moment M, is considered to be zero due to the high torsional
stiffness of the origami structure [86]. The forces for the individual actuators

can then be solved.

3 M}‘ Mx
FZ+W]-+Z,(:].+1 Wi+ 7+ 3

3d
FZl,j = 3 B
F Wi+ W -2
Foj= 3]+ \/gd, and (3.29)
M,
Fo+ Wi+ S We— 7+ \1/‘%
Fz3,j = 3 .

These equations define how the overall load distribution affects the individual
external forces within a single OCM when it is integrated into the complete

manipulator.

Bending and Strain Estimation Using LUTs To determine the general
configuration of the manipulator, it is necessary to calculate the bending angle
(¢¢) and the bending direction (6.) for each OCM. The total bending moment

M= M?+ M. (3.30)

By applying the precomputed LUT for bending, the deformation parameters

is first calculated.

can be estimated.

o+ M
Oc =Fs'(M,S¢), and ¢¢ = tan™! (ﬁy) . (3.31)

X
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Here, Sc is the backbone length of a single extended OCM. Since all three
OCM s in an extended OCM deform identically, the total bending angle of the
manipulator is

Ototal = 3¢C- (3.32)

In a similar manner, the strain in each OCM is obtained from its corresponding

inverse mapping function.
&ij = Fu' (Foij, Po). (3.33)

Actuator Length Estimation for the Origami Manipulator Once the
strain values are retrieved from Equation 3.33, the individual actuator lengths

for the j-th floor can be computed.

l]j =S¢ + E]jl() + d(COS Oc — 1),
L =S¢ + exjlo + d(cos(6¢c — 120°) — 1), and (3.34)
l3j =Sc + 63jl() + d(COS(@C — 2400) — 1).

These equations incorporate the combined effects of both axial and bending
deformations. This ensures that the actuator length is correctly determined
and can be applied in Equation 3.26 to estimate the resultant tip position and

orientation.

Pressure-Controlled Configuration Estimation By extending the inverse
mapping method from a single OCM to the entire manipulator, the combined
effects of external forces and moments on the stacked OCMs can be considered.
The configuration parameters, which include the actuator lengths (/;), can be

determined using the inverse function.

C = £} oy (P Text).- (3.35)

Here, 7,,; represents the total external load, which includes gravity and any

externally applied forces.
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Figure 3.7: Control schematic of the origami manipulator. The closed-loop
system controls the manipulator to reach a desired configuration (C) by ad-
justing the pressure regulators through a PD controller. The blue lines show
the flow of the open-loop control, where the inverse kinematics model is used
to determine the required pressure inputs without feedback.

For a manipulator that consists of multiple extended OCMs in series,
the LUT method is applied iteratively, which accounts for the propagation of
the load from the top plate downwards. The pressure required to maintain a

specific configuration can then be calculated.

P = fi7 (Tex, ©). (3.36)

In this expression, foﬂc  represents the inverse function that estimates the
required pressure based on external forces and a target configuration. This
function provides a pathway for implementing real-time pressure control to
achieve a desired manipulator configuration. Figure 3.7 shows the proposed
model-based control scheme. It uses the derived models as a plant for both
open-loop and closed-loop control, which will be explained further in the next

section.
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3.3.6 Characterization of the Origami Cylinder Module

Experiments were conducted to examine the kinematics of the constructed
OCMs and to validate the accuracy of the developed model. Since the deriva-
tion had decoupled the linear and bending kinematics, separate experiments
were performed to measure the axial deformation and the pure bending of the
OCM:s.

For the axial deformation analysis, the normal force (F,) and the actuator
length (/) were measured to characterize the system’s response under a constant
pressure input and an external load. Figure 3.8-(A) illustrates the setup where
force and strain data were collected using a tensile tester (34SC-1, Instron),
while the pressure input (P) was controlled via a pressure regulator (ITV2030-
212cl, SMC). The head of the tensile tester was programmed to move at a rate
of 0.01 mm/s, which ensured a quasi-static condition. During these tests, the
pressure was varied from O kPa to 30 kPa in 2 kPa increments, resulting in
16 distinct isobaric force-strain curve profiles. The initial length (/) of an
individual actuator was set to 40 mm, with the strain spanning a range from
-60% to 60%. This range was selected to ensure operational durability without
causing permanent damage to the origami structure.

The setup for the bending experiment is illustrated in Figure 3.8-(B),
wherein a tendon cable was affixed to the actuator’s tip to apply a bending
moment. A bending state was induced in the actuator by pulling the cable
a certain distance from the neutral axis. Subsequently, moment-angle curves
were obtained while the length of the neutral axis (s) was held constant.
In the absence of external loads, the pressure within the origami chamber
was adjusted to define the initial length (/o) before bending commenced. The
actuator’s length was varied from a fully compressed state of / = 20 mm
(e = —0.6) to a fully extended state of / = 80 mm (¢ = 0.6) in 3 mm
increments, yielding 21 distinct bending profiles. The range of the bending
angle was determined experimentally to stay within the feasible ROM of the
actuator.

To analyze the motion, the bending sequence was video-recorded to track
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Figure 3.8: (A) Experimental setup for loading-unloading test using a tensile
tester. The input pressure was controlled using a pressure regulator. (B) Exper-
imental setup for bending experiment, using a pulley system to exert a moment
on the origami cylinder. Three markers attached to the side of the OCM were
tracked using a motion capture system.

markers placed on the actuator, while the curvature and bending angle were
tracked with a motion capture system (OptiTrack, NaturalPoint). The error
from the motion capture system and the accumulated propagation error are
summarized in Table 3.2. The moment was calculated indirectly using the
moment arm length and the force data acquired from the tensile tester.

The origami cylinder structure showed converging force-displacement
curves under repetitive actuation, a behavior primarily attributed to stiffness
degradation from wear along the crease lines, as has been reported in a prior
study [127]. Accordingly, the origami cylinder specimen underwent 400 load-
ing and unloading cycles to achieve a stable curve behavior. As shown in Fig-
ure 3.10-(A) and Figure 3.10-(B), both linear and bending actions produced

convergent curves, indicating consistent performance during the different tests.

3.3.7 Control Task Implementation in the Soft Manipulator

Building upon the preceding sections, a series of experiments was performed
to assess the performance of the manipulator integrated with OCMs. For ma-
nipulator control, three types of sensors were employed, and three origami
cylinders were actuated independently by three pressure regulators. The ori-

entation of the top moving plate {S} with respect to the fixed base frame {B}
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Metrics Result

OCM characterization Fa: [er : 7.4% (0.77N), enys; : 4.7% (0.48N) ]
Fp: [ep : 18.0% (0.014 Nm), epys : 5.9% (0.005 Nm)]

ROM (Iax = 157.79, Omax = 0.788)

Origami manipulator ROM N
RMSE(X, X): 2.15% (3.45 mm), RMSE(q, §): 2.67% (0.028 rad)

Trajectory tracking Triangle: [OL: 15.30mm, CL: 7.22mm] Circle: [OL: 7.62mm,
CL: 5.54 mm)]
Position control with the Random 10 points: [OL: 14.29 mm, CL: 5.86 mm]

external load Average rise time=3.48 s, settling time=7.32s

Orientation regulation with RMSE(q, §): 3.15% (0.033 rad)

dynamic external load Average rise time: 1.21 s, settling time: 2.55 s

* Calibration errors are included in the experiments conducted with the motion capture
system (mean error: 0.122 mm 3D).

Table 3.2: Summary of modeling and control results across different experi-
mental scenarios.

was determined using Inertial Measurement Units (IMUs) (ebimu-9dofv5-
r3, E2box). Concurrently, Hall-effect sensors located within each chamber
provided calibrated estimates for the lengths of the bent actuators. The com-
bination of the IMU and Hall-effect sensors enabled the measurement of the
frame {S} orientation and the manipulator’s backbone length (s.).

The application of the PCC assumption for the continuum manipulator
allowed for the determination of a unique position at the tip of the frame {S},
a method explored in prior research [126]. Throughout the experiments, both
the position ()? ) and the orientation (ny, ny, and nz) of the manipulator’s tip
were systematically measured.

The following experiments were designed to evaluate the performance of

the origami manipulator and to validate the accuracy of the derived model.

Range of Motion Test The initial experiment was designed to monitor the
centroid position of the frame {S} by employing various combinations of
pressure inputs, in order to explore the accessible workspace of the designed
manipulator. Each test iteration followed 16 discrete pressure steps, which mir-

rored the axial deformation experiments. Given that the manipulator features
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three degrees of freedom, the total number of combinations was 163 = 4096
points. The estimated positions derived from the forward kinematics (X) were
compared against the experimentally measured points (X) using the root-
mean-square error (RMSE). The orientation error was calculated in a similar
manner by comparing the Euler angles (nx, ny, and nz). The actual posi-
tion and orientation of the tip were measured using the IMUs and Hall-effect

SENSors.

Trajectory Tracking Tasks The second experiment focused on trajectory
tracking. Two time-dependent trajectories, a triangle and a circle, were used
to provide references for open-loop control, as shown in Figure 3.9-(A). Once
the target trajectories were predefined, the required actuation profiles for each
actuator were obtained using the function from Equation 3.26. When the time
variance of each required length is known, the input pressure profiles can be
derived from the relationship between pressure input and configuration, as
given by Equation 3.35. For comparative purposes, proportional-derivative
(PD) control was also conducted using feedback from the embedded sensors

(see Figure 3.7).

Position Control with External Load The final experiment involved posi-
tion control using the kinematic model while an external load was applied. As
illustrated in Figure 3.9-(B), a 250 g weight, which is nearly equivalent to the
total mass of the manipulator (W, = 230 g), was attached to the manipulator’s
tip during actuation to evaluate its performance under payload. A set of 10
random coordinates within the manipulator’s range of motion was selected
and scheduled for continuous tracking. The input pressure profiles for the
three actuators were designed to guide the tip position of the manipulator to
follow these selected points. To verify the accuracy of the programmed model
in reaching the target positions, a settling time of 10 seconds was allowed at

each point to ensure the system reached a steady state.
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Adaptation to Dynamic Loading To evaluate the force feedback and con-
figuration control capabilities of the origami manipulator, a dynamic loading
scenario was tested. The external force was estimated using the model derived
in Equation 3.22 for each OCM that composes the manipulator. During the
estimation of the external force, a specific configuration, such as the tip po-
sition or the orientation of the upper frame {S}, was actively controlled. The
primary objective of this experiment was to maintain the predefined configu-
ration while incremental weights were added to the system. As shown in the
setup in Figure 3.9-(B), the external load was applied at the center of the frame

{S}, and a closed-loop control scheme was implemented to achieve this task.

3.3.8 Various Applications

To highlight the versatility and potential practical applications of the proposed
OCM:s, this section presents example configurations and their corresponding

operations.

Origami Gripper The OCMs can be utilized to construct an adaptive
origami-based gripper, as shown in Figure 8-(A). This gripper leverages the
flexibility and compliance of the OCMs to conform to various shapes and
sizes of target objects. The combination of both axial and bending deforma-
tion allows the gripper to handle delicate objects while maintaining sufficient
stiffness to apply the necessary grasping forces. Such a system holds poten-
tial for applications in areas that require delicate manipulation, for instance,

handling fragile items in unstructured environments.

Origami Continuum Robot The OCMs can also be extended to form a
two-segment continuum robot, as depicted in Figure 8-(B). By connecting
multiple OCMs in series, the manipulator becomes capable of performing
complex motions, such as bending and reaching into constrained spaces. The
robot can also be augmented with an end-effector, such as a gripper for object

manipulation, making it well-suited for applications in inspection, exploration,
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(A B)

Figure 3.9: (A) Circular and triangular trajectories to be tracked by the ma-
nipulator with position control. (B) Position control of random tip position
control with a vertical load applied at the tip.

or soft robotic navigation within unstructured environments. The derivation of
the kinematics for this two-segment robot is similar to the process described
for the single-segment manipulator in Section 3.5, but it additionally accounts

for the interaction force and moment from the neighboring segment.

3.4. Results

3.4.1 Validation of the OCM Kkinematics model

The experiments were designed to validate the models presented in Equa-
tions 3.9 and 3.21. Initially, the linear and bending deformations were charac-
terized without any pressure input, with the results shown in Figure 3.10-(A)
and (B). These plots show the characterization curves generated from the raw
experimental data. In Figure 3.10-(A), the axial force F; is plotted against
the OCM’s calculated strain €. The strain range was conservatively limited to
€ € [-0.6,0.6] to prevent extreme deformation or damage. This experiment
revealed a noticeable hysteresis between the loading and unloading curves,
which is attributed to the hyperelastic nature of the origami cylinder. We de-

fine the hysteresis error as the percentage difference between the loading (F*)
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Figure 3.10: (A) Measured data of the cyclic test for linear deformation of the
OCMs, showing the force-strain curves when no input pressure was applied.
(B) Measured data from the cyclic test for bending deformation, with an
initial strain (eg) of 0.6. (C) Grid plot visualizing the 3D relationship of
force, pressure, and strain. Experiments were conducted with 16 different
pressure levels with an increment of 2 kPa, within the strain range of -60%
to 60%. Solid lines represent the forces estimated by the model, while the
filled surfaces show the measured data. (D) Moment and bending angle curves
for 16 different initial strains (&g) of the single layer. The initial strains (&)
were adjusted through 16 steps of pressure inputs, consistent with the linear
deformation experiments. Solid lines indicate the moments estimated by the
model, while the filled surfaces show the measured data.

and unloading (F ) forces relative to the maximum observed force:

F-F;
= ———= x 100 (%). 3.37
ehysl maX(FZ) X 00 ( 0) ( )
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To compare with the derived models, which do not account for hysteresis, the

mean of the loading and unloading data for both force (F,) and moment (M)

were used:
_ Ff+F]
F,= ——,
2 (3.38)
_ M+ M .
and M = — respectively.

For the bending experiment, the achievable range of the bending angle de-
pended on the cylinder’s initial strain, which aligns with the geometric con-
straints in Equation 3.13. For example, Figure 3.10-(B) shows a bending test
where the range was limited to 1.5 radians to prevent damage.

Figure 3.10-(C) presents the extended characterization curves for lin-
ear deformation under various pressure inputs. The plot shows all measured
data points, each corresponding to a specific axial force (F;), strain (€), and
pressure (P). The values predicted by our model (Equation 3.9) are overlaid
on the measured data to show the model’s accuracy. While our model can
be represented as a continuous surface, the experimental data is shown as a
color-filled grid to reflect the discrete pressure levels used during the tests. The
estimated force, FZ, is visualized as this continuous, gradient-colored surface

in Figure 3.10-(C). The force estimation error, calculated as

Z FZ

x 100 (%), (3.39)

Z

was 7.4% on average, corresponding to a mean absolute error of 0.77 N. The
error tended to increase at pressures above 20 kPa, reaching a maximum of
13.7%. In addition, the average hysteresis error for the axial force was 4.7%.
For the bending case, Figure 3.10-(D) shows the extended characterization
curves measured at various initial strains. A key observation is that the feasible
bending range is a function of the initial strain: a larger initial strain permits a
wider range of bending angles. This experimental result aligns with our model,
which incorporates geometric constraints dependent on the initial strain €.

Therefore, the pre-bending initial strain can serve as a reliable indicator of the
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Figure 3.11: (A) Experimental setup for position holding as the load increased
over time. The manipulator maintained the target angle g throughout the
experiment while the load increased from 0.75 N to 1.80 N over 25 seconds.
(B) Pressure input profile as the external load increased. (C) Result of the
quaternion angle during the task maintained by the manipulator around the
target value.

allowable bending range. The moment-related errors were calculated using
the same method as the axial case. The average moment estimation error was
18%, corresponding to a mean absolute error of 0.014 Nm. Furthermore, the
average hysteresis error was 5.9%. The estimation error tended to increase
with larger initial strains, which corresponded to a wider ROM for the bending

angle.

3.4.2 Task Implementation Results

The proposed three-DOF manipulator was actuated using all possible com-
binations of pressure inputs to evaluate its performance. The experimental
results were then compared against the analytical model’s predictions from
Equations 3.26 and 3.35. First, the manipulator’s reachable workspace was
evaluated, as shown in Figure 3.12-(A). For each combination of pressure in-
puts (P; ~ P3), the position and orientation errors between the measured data
and the model’s predictions were recorded. The manipulator operated within
its expected range of motion (ROM), exhibiting an average position RMSE
between the measured pose X and the predicted pose X of 8.2 mm. However,

several outliers occurred at high-pressure inputs, where the maximum error
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reached 24.5 mm.
To better contextualize the position error relative to the overall workspace,
a normalized, ROM-based percentage error was calculated. First, the maxi-

mum workspace diagonal, /,,,, was calculated as

Inax = \[5)25 + 6; + 5%, (340)

where ¢0,, 6y, and 6, represent the total workspace ranges along each axis. The
absolute positional error, |)? -X |, was then normalized as follows:
X-X
€ROM,n = |l—| x 100 (%). (3.41)

max

This normalized metric provides a more insightful measure of the manip-
ulator’s accuracy relative to its total workspace. For orientation errors, a
quaternion-based metric was used instead of simple Euler angle RMSE to
ensure a more robust and accurate measurement. The quaternion error was
calculated as

eq =2 -arccos(|qm - gel), (3.42)

where g, and g. are the quaternions for the measured and estimated orien-
tations, and - denotes the dot product. This method provides a more holistic
orientation error metric compared to analyzing individual vector components.
Similarly, a normalized quaternion error was derived by dividing the error by

the maximum possible bending angle, Oy,x:

e
eqn = 9—q x 100 (%). (3.43)

max

We observed that regions of extreme deformation contributed most sig-
nificantly to the overall average position error. To better assess the model’s
precision in regions of moderate deformation, the errors within a reduced
ROM was analyzed, defined by x,y € [-50,50] mm and z € [70, 140] mm.
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Figure 3.12: (A) Workspace analysis with all combinations of pressure inputs,
comparing the model predictions with the actual measurements. (B) Result of
triangular trajectory tracking conducted on a z = —100 mm plane. (C) Result
of circular trajectory tracking control performed on a z = —100 mm plane. (D)
z-axis positions measured during both tracking tasks, comparing the model-
based open-loop (OL) control with the closed-loop (CL) control that uses the
embedded IMU and the Hall-effect sensors.

A summary of all experimental errors is provided in Table 3.2.

For the trajectory tracking tasks, two reference trajectories were designed
on the x-y plane at a constant z coordinate, both of which were within the
manipulator’s measured ROM. These reference trajectories, denoted T()? ),
were defined as time-varying position functions. For the open-loop case, the
required pressure inputs for each OCM were calculated from the reference
trajectory using the inverse model (Equation 3.35), assuming zero external
load. This model-only strategy constitutes our open-loop control (OL). In
addition to the open-loop validation, a closed-loop control strategy that utilized
feedback from the integrated IMU and Hall-effect sensors was also tested. For
these evaluations, triangular and circular reference trajectories were set. For the

triangular trajectory, the average position RMSE was 15.30 mm for open-loop
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control and 7.22 mm for closed-loop control. For the circular trajectory, the
corresponding errors were 7.62 mm (open-loop) and 5.54 mm (closed-loop).
The results for both trajectories are plotted in Figure 3.12-(B), (C), and (D).
The open-loop controller completed each cycle in a consistent 10 seconds, as
its timing was determined solely by the programmed model. In contrast, the
closed-loop controller’s completion time varied per trial due to the PD error
correction, typically taking approximately 5 seconds for the triangular path
and 10 seconds for the circular path.

In the position control task, the manipulator successfully reached 10 ran-
domly selected target points while under an external load. The target points
and measured trajectories are shown in Figure 3.13-(A), with the correspond-
ing coordinate errors plotted in Figure 3.13-(B). Allowing 10 seconds to reach
each target, the resulting average position errors were 5.6 mm (x), 4.7 mm (y),
and 7.3 mm (z), yielding a mean 3D spatial error of 5.86 mm. To further assess
performance, the rise and settling times at each target were measured, which
averaged 3.4 s and 7.3 s, respectively. For comparison, the open-loop model
alone resulted in a significantly higher average distance error of 14.29 mm,
similar to the trajectory tracking results.

In the force control task, the manipulator maintained its pose while an
external load was gradually increased. We observed an orientation regulation
error (q) of 3.15%, which corresponds to 0.033 rad. The system’s dynamic
response was faster than in the position control task, with average rise and
settling times of 1.21 s and 2.55 s, respectively.

The stability and accuracy of the manipulator were evaluated through
a position-holding experiment under varying external loads, as depicted in
Figure 3.11. In this setup, the manipulator was tasked with maintaining a
constant target angle, q, while an external load was gradually increased. As
shown in Figure 3.11-(A), the load increased from 0.75 N to 1.80 N over a
period of 25 seconds.

To counteract the increasing external force, the system adjusted the pres-

sure input to the manipulator, a process detailed in Figure 3.11-(B). This active
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Figure 3.13: (A) 10 target points with random selections in red circles and the
actual trajectories of the manipulator’s tip. 10 seconds were allowed to reach
each goal position, allowing the entire task completion time of 100 seconds.
(B) Position control results in three axes, demonstrating the manipulator’s
performance in reaching the targets.

control mechanism was crucial for maintaining the desired position. The results
of the experiment, displayed in Figure 3.11-(C), demonstrate the manipulator’s
ability to maintain the target quaternion angle accurately throughout the task,

despite the significant increase in external load.

3.4.3 Applications

The soft gripper prototype, shown in Figure 3.14-(A), consists of three bending
OCMs. Each OCM is fixed on one side, allowing it to bend toward the center
of the gripper when pressurized. These OCMs are strategically oriented to
converge at the gripper’s center, enabling a grasping motion. The full system,
as illustrated in Figure 3.14-(B), integrates this soft gripper at the end of
the extended manipulator segments, forming a continuum robot. For precise
control, an IMU is installed in each trunk segment to measure orientation,
while a Hall-effect sensor is embedded within each OCM to track its motion.

The performance of the continuum robot is illustrated in Figure 3.15-(A)
and (B). The results provides a visual demonstration of the origami gripper
and the continuum robot carrying out a task, which involves picking up an

object at a predetermined location. The task necessitated controlling the end-
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Figure 3.14: (A) Soft gripper prototype composed of three bending OCMs.
One side of each OCM is fixed to realize to the module’s bending motion when
pressurized, with all three OCMs oriented toward the center of the gripper.
(B) Extended manipulator segments as a continuum robot with the gripper
installed at the end. IMUs are installed in each trunk segment, and a Hall-
effect sensor is embedded in each OCM.

effector’s orientation and position to prevent collisions with the object and
to correctly align the gripper for a secure hold. This reaching procedure was
accomplished in five consecutive steps to gradually approach the target object.
Upon reaching the object, the gripper was activated to grasp it.

The system utilized six extended OCMs, whose backbone lengths were
tracked by Hall-effect sensors. The orientations of each trunk were measured by
two IMUs. The pre-set positions and orientations for each step were established
before the task and managed by a PD control loop, as detailed in Figure 3.7.
The position tracking data for the x, y, and z coordinates are presented in
Figure 3.15-(C), while the measured orientations during the task are shown in
Figure 3.15-(D). The continuum robot successfully reached and gripped the

object in under 25 seconds.

3.5. Discussion

The experimental results verify the feasibility and the effectiveness of the
proposed soft continuum manipulator, which leverages OCMs with propri-
oceptive functionality. Experiments on the linear and bending deformation

modes of the OCM confirmed the accuracy of the model. Moreover, integrat-
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Figure 3.15: (A) Configuration estimation of two trunks using embedded
proprioceptive sensors. (B) Object picking task using the continuum robot
using the open-loop control. A total of five different steps were planned to
reach the predefined object location and pick up and place the object in the
end. (C) Position control result of the task implemented by the continuum
robot (top) and five input commands during the task (bottom). (D) Orientation
changes following the five input steps, measured by the IMU sensor on the
first trunk.

ing proprioceptive OCMs into the soft continuum manipulator demonstrated
the potential for practical applications.

The validation of the OCM model showed low errors in estimating both
force and moment, indicating the possibility of practical implementation of the
Yoshimura pattern-based origami actuator in real-world settings. The errors,
however, rapidly increased under extreme conditions, such as at high pressures
or strains, and hysteresis was also observed in both force and moment mea-
surements. This may have been caused by several reasons, such as variations in
the material properties and manufacturing tolerances from manual fabrication.
While the model simplifies the complexity in the analysis that typically uses
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FEA, it may not capture various nonlinear behaviors. Nevertheless, within a
defined ROM for both OCMs and the manipulator, the model proved to be
useful.

When assembled into a larger system, the OCMs demonstrated the ca-
pability of reaching diverse positions and making different orientations with
precision. Although the average errors within the ROM tasks were modest, the
outliers at high pressure inputs highlighted the kinematic nonlinearities, par-
ticularly over-actuation at extreme pressure levels, which affected the accuracy
of the prediction model and sometimes violated the PCC assumptions. The
trajectory tracking task showed the efficacy of the model in open-loop control,
and the accuracy was even increased with closed-loop control, suggesting its
potential to improve the performance in practical implementations. Notably,
in tasks involving payloads, the manipulator was able to maintain the high
accuracy, with decreased errors and relatively short settling times.

Table 3.3 compares our proposed origami-based soft pneumatic manip-
ulator system with state-of-the-art systems (Cited Papers: [85,90,110, 112,
128-137]). Our approach introduces several distinct advantages derived from
our novel modeling and design strategies. Unlike existing systems that utilize
origami cylinders primarily as structural shells with separate actuators, such
as pneumatic muscles or SMA wires, our Origami Cylinder Modules (OCMs)
serve simultaneously as the structural framework and the pneumatic actuator
chambers. This integrated design significantly reduces complexity and weight,
enhancing the manipulator’s overall agility and responsiveness.

Our simplified kinematic model explicitly incorporates internal pres-
sure inputs, volumetric deformation, and virtual work, extending conventional
strain-energy-based geometric approaches. By establishing explicit mapping
functions based on extensive experimental data, our model enables efficient
real-time forward and inverse kinematics computations. This modeling strat-
egy provides scalability, seamlessly transitioning from single OCMs to mod-
ular manipulators and multi-segment continuum robots without requiring ad-

ditional assumptions or rigid-link approximations.
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Additionally, the integration of proprioceptive sensing mechanisms, specif-
ically Hall-effect sensors for length measurement and IMUs for orientation,
significantly enhances real-time closed-loop control capabilities. This embed-
ded sensing strategy allows accurate manipulation and robust performance in
complex operational tasks, such as precise trajectory tracking and dynamic
payload handling, without sacrificing system simplicity.

Overall, this combination of an integrated pneumatic-actuated origami
design, a scalable and simplified kinematic modeling approach, and embedded
proprioceptive feedback positions our system uniquely among soft pneumatic
manipulators, offering substantial improvements in control efficiency, payload
capacity relative to self-weight, and adaptability to complex manipulation
tasks.

Future work could include the exploration of the dynamic characteristics
of the system, leveraging the numerically derived models and equations for
differentiation. Following the approaches in previous studies [101, 138], in-
corporating derivatives of pressure-to-configuration relationships could yield
a dynamic model that includes the velocity and acceleration terms, offering
a comprehensive analysis of the Yoshimura cylinder used as a pneumatic
actuator.

Another area of future work will be the incorporation of tactile or force
sensors into the actuation modules for detecting contacts from the surround-
ings. Different sensing mechanisms, such as microfluidic [139, 140], capaci-
tive [141, 142], or fiber-optic sensors [143], can be employed, combined with
machine learning algorithms. In this way, the robotic arm will be more in-
teractive with the environment, including humans [8] or robust in rejecting
disturbances [144].

3.6. Conclusion and summary

The analytical modeling approach detailed in this chapter successfully en-
abled real-time control for a specific, geometrically complex, and compliant

system. While this is a significant accomplishment, there are considerable lim-
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Author (Year) Control Model Volume [mm] ROM [mm, deg] Payload Pressure Weight Error

[N] [kPa] [g] [Fe]
Greer (2017) CL Sensory 38x38x420 400x400x300 2 10.38 - 5
Hao (2018) CL FK L:625,R: 75 - 5 250 - 4.09
Zhang (2019) OL FK L: 300, R: 39 90° 24.56 100 70.2 1.21%
Huang (2021) OL IK 40x40x200 300%x300x400 0.6 200 - 2.89
Toshimitsu (2021) OL PCC - 200%x200x100 1.17 - - 4.23%
Robertson (2021) OL Geometric L:45 45,42.5° 2 60 56 -
Shen (2021) CL Sensory L: 114,R: 54 78° 2.3 100 - 3.37*
Zou (2022) CL Sensory L: 800, R: 15 800, 120° 2 103 - -
Liu (2022) OL PCC L: 2300, R: 100 - - 100 5000 -
Zaghloul (2023) CL Sensory L: 101.6, R:50.8 76.2 440 185 72 -
Fan (2023) CL Sensory L: 60 40x40x40 2000 80 - 5
Mak (2024) OL - L:97 94.7° 254 140 43 -
Ku (2024) CL FK, IK L:234.5,R: 80 102, 70.4° 20 80 1100 1.07*
Zhang (2024) OL FK, IK L: 430.7 - 0.302 125 355.2 7.8
This Work (OCM) CL FK, IK L: 155,R: 52.5 160x160x80, 60.4° 10 40 238 2.15%

Table 3.3: Comparative Analysis of Soft Robotic Manipulators. The position
errors marked with * are the errors calculated using the methods we defined
in Equation 3.41.

itations that prevent this method from being broadened to solve general tasks
for deformable robots. The primary limitations of the analytical approach are
threefold. First, it lacks generality, as the model is derived specifically for the
Yoshimura origami pattern, making it difficult to apply to systems with more
complex or irregular geometries. Second, it relies on simplifying assump-
tions, such as decoupled kinematics, which may not hold for more complex,
hyperelastic systems. Finally, the process of deriving these models from first
principles is labor-intensive and requires deep domain expertise for each new
robot.

These limitations lead to the central motivating question for the next
phase of this dissertation: How can we create fast and faithful simulation
models for more general and complex compliant systems where a simple an-
alytical model is not feasible? To answer this question, the following chapter
introduces a fundamentally different and more generalizable methodology. It
presents a data-driven surrogate modeling framework designed to learn the
system dynamics directly from high-fidelity simulation data, thereby provid-
ing a scalable pathway to creating the simulation environments required for

modern robot learning.
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Chapter 4.

Data-driven Simulation for Soft Robot
Dynamics

4.1. Motivation for a Data-driven Approach

As detailed in the previous chapter, analytical modeling can successfully con-
trol a soft, deformable robot for specific, well-defined tasks. However, this
method has significant limitations that prevent it from being a general solution
for soft robots. The core problems lie in the inherent constraints, simplifying
assumptions, and highly specific nature of these models. Even a small change
to the robot’s hardware or task requires a sensitive and labor-intensive recal-
ibration of its parameters. This lack of generality makes analytical models
unsuitable for frameworks like RL, which aim to perform a wide variety of
tasks. Since RL is a key method for enabling robots to handle diverse and com-
plex tasks, a new approach is necessary. As discussed in Chapter 2, related
work, using an end-to-end RL approach directly on a physical soft robot is
not feasible. The physical fragility of soft robots makes them prone to damage
during extensive exploration, and the process of gathering sufficient data is too
time-consuming. Therefore, the research is naturally driven toward creating
a robust simulation environment for deformable bodies. This simulation will
provide a safe and efficient platform for developing RL-based control policies,
overcoming the limitations of both physical experimentation and traditional
analytical models. This work is based on the previous publication, “Bridging
High-Fidelity Simulations and Physics-Based Learning Using A Surrogate
Model for Soft Robot Control” published in the Advanced Intelligent System
in 2025.
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4.2. Introduction to High-fidelity Soft Robot Simula-
tion

4.2.1 Soft Robotics and Modeling Challenges

The rise of soft robotics has enabled the creation of highly adaptable and safe
systems capable of interacting with complex, unstructured environments [76,
145,146]. These robots, made from flexible, deformable materials, are particu-
larly effective for tasks requiring delicate manipulation and safe human-robot
interaction. While the use of external sensors and feedback control has be-
come standard to enhance their performance and safety [16, 17, 147], relying
on sensors alone is often not enough. This necessitates the use of robust mod-
eling techniques to predict and control the complex nonlinear behaviors of soft
robots [148-150].

Traditional modeling approaches, such as lumped parameter models [13],
Cosserat rod theories [15], and voxelization [14], struggle to accurately capture
the hyperelastic properties of soft materials. This limitation highlights a critical
need for accessible and precise modeling frameworks to fully realize the
potential of soft robots in fields like biomedical devices [151], human-robot

interaction [152], and precision manipulation [153].

4.2.2 The Role of Simulation and Learning

The FEM models are widely used for analyzing soft materials due to their
ability to provide high-fidelity, multiphysics simulations [154, 155]. However,
these models are computationally demanding and therefore not practical for
real-time or dynamic applications [19,156]. Their high resource requirements
also limit their use for soft robot control [20, 157].

Recently, data-driven methods like deep learning [77, 158, 159] and rein-
forcement learning (RL) [160-163] have emerged as promising alternatives for
learning the dynamics of soft robots. RL, in particular, allows for the learning
of optimal control policies through interaction [22,23] and has been applied

to dynamic control tasks in soft robotics [82, 164, 165]. Nonetheless, these
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end-to-end approaches face challenges such as damage to the robot during
exploration, susceptibility to noise, and difficulty in collecting sufficient data
due to the mechanical fragility of soft robots [99, 151]. These issues under-
score the necessity for safe, risk-free methods for acquiring data to support
RL-based control.

4.2.3 Towards a Unified Framework

In response to these challenges, platforms such as the Simulation Open Frame-
work Architecture (SOFA) have been developed to enable high-fidelity mod-
eling and real-time interaction for soft robots [7,166,167]. While FEM-based
simulations in SOFA facilitate physical interactions [168, 169], they still face
scalability and efficiency issues. Model Order Reduction (MOR) techniques
can improve runtime but are often task-specific and computationally expensive
to implement [41,44].

Concurrently, new RL environments for soft robotics, including SOFA-
Gym and others [45, 170, 171], have been introduced to allow for the direct
learning of control policies. However, achieving high-precision control in both
position and force remains challenging due to the complexity of soft body
dynamics and limitations in simulation speed and accuracy. These collective
efforts highlight a need for a solution that combines efficient simulation fidelity
with learning-based control.

This work introduces a new framework that integrates soft robotic models
into a physics-based simulation environment compatible with RL. It bridges
the gap between high-fidelity FEM models and fast, physics-based simula-
tions by using a computationally efficient alternative model. The framework
is designed to achieve three main goals: (i) transferring dynamics from high-
fidelity FEM data to a fast physics-based simulation while preserving essential
behaviors, (ii) enabling accelerated simulations and data acquisition for RL,
and (iii) validating the framework’s accuracy across different simulation do-
mains and in sim-to-real transfer tasks. By improving control and simulation

efficiency, this framework provides a solid foundation for data-driven learn-
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ing in soft robotics, allowing for rapid iteration and safe policy exploration.
It paves the way for using high-resolution, physics-informed simulations to
speed up reinforcement learning for tasks like manipulation, interaction, and

compliant control in real-world settings.

4.3. Framework Overview

A three-domain framework was developed to create a functional bridge be-
tween the physical hardware, a high-fidelity FEM simulation, and an ac-
celerated physics-based reinforcement learning environment. The complete
simulation-to-learning pipeline is presented in Figure 4.1. A pneumatic soft
manipulator was selected as the representative system for this study due to
its high degrees of freedom and significant nonlinear dynamic characteris-
tics, which provide a structured benchmark for evaluating control-oriented
simulation strategies [172—-174].

The first domain is the high-fidelity simulation, which was constructed
in the SOFA framework to serve as a physically grounded digital twin of the
hardware. This model incorporated the robot’s nonlinear material behavior
and pressure-driven actuation, enabling an accurate prediction of the manip-
ulator’s response under varying pressure inputs while avoiding the risk of
hardware degradation. To manage the high computational cost of this model,
MOR techniques were applied. This step enabled the efficient generation of
time-series data for subsequent learning of the system’s forward and inverse
kinematics [41,44,175].

Despite its precision, the SOFA-based simulation remains computation-
ally intensive and is therefore unsuitable for reinforcement learning, which
requires a massive volume of agent-environment interactions to train a pol-
icy [45,170]. To address this limitation, the second domain of the framework
was introduced, which is a computationally efficient surrogate model imple-
mented in physics-based simulation such as PyBullet [30]. This simulator was
selected for its real-time performance, robust collision handling, and seamless

integration with established machine learning libraries. The surrogate model
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itself comprises a combination of revolute and prismatic joints arranged to ap-
proximate the primary deformation patterns observed in the FEM simulation,
providing an environment fast enough for efficient policy training and data
generation.

The primary contribution of this work lies in the integration of these
three distinct domains, the real hardware, the FEM-based simulation, and the
physics-driven surrogate environment, through a set of data-driven mapping
functions. These mappings are the critical connections that ensure dynamic
consistency across the pipeline. A calibration process aligns the real robot
with the FEM model, a learned dynamics and actuation mapping translates
the complex physics from the FEM model to the fast surrogate, and a final sim-
to-real protocol enables the transfer of learned policies back to the physical
hardware. These connections create a bidirectional flow of information that is

essential for the validation of the framework’s success.

4.4. Model Calibration
4.4.1 FEM Model Construction

The calibration process is initiated by replicating the configuration of the real
robot within the SOFA FEM environment. As depicted in Figure 4.2-(A), the
physical system consists of a bellow-type parallel manipulator that is actuated
by three independent pressure regulators and mounted on a fixed frame with
a movable top plate. This physical setup was reconstructed in SOFA with a
volumetric tetrahedron mesh that includes three internal cavity meshes for
simulating the actuation, as shown in Figure 4.2-(B).

In order to align the simulation with the physical hardware, the state
variables for the model were defined as illustrated in Figure 4.3. These state
variables are composed of the position of the tool center point (TCP) (p € R?),
the length of the manipulator’s backbone (/ € RD), its curvature (x € R!), and
the relative orientation of the top plate (g € R?). Collectively, these variables

form a configuration state vector (X € R™s) and its corresponding velocity
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Figure 4.1: Overview of the proposed framework connecting three different

domains (“Real robot”, “FEM simulation”, and ‘“Physics-based simulation’)

representing a common soft manipulator. The soft manipulator is actuated

by the pressure input (P) and the output includes the state positions (X) and
the velocities (X). The input and the output are marked with the subscripts
R, S, and P, respectively. Between each domain connections were developed

utilizing simulations and methodologies, such as the model calibration, the

feature mapping and the sim2real transfer learning.

vector (X € RMs), where N, denotes the total number of dimensions for the

state variables.
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Figure 4.2: (A) Components of the soft manipulator in the real-world setup,
including the bellows-integrated manipulator. (B) FEM model of the soft ma-
nipulator in the SOFA simulation scene, utilizing a mesh model that replicates
the physical structure.
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Figure 4.3: Configuration state information (X) of the soft manipulator, which
are necessary to define the behavior of the manipulator.

4.4.2 SOFA Scene Setup

The interpretation of the elastic body in the SOFA libraries was used with
appropriate constraints to define the rigid parts of the robot, such as the bellows
connecting parts and the upper frames [44]. The setups are implemented
in Python scripts using the Python3 libraries. These code files define the
simulation GUI, referred to as the “SOFA scene", which includes the boundary
conditions, the definitions of pneumatic actuation, the solver configuration and
the properties of the material. As shown in Figure 4.4, the material properties

were initially assumed and later refined to achieve a configuration similar to
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Figure 4.4: (A) Tensile test setup for the elastic resin specimen used in the soft
manipulator. (B) Optimization of Young’s modulus (E) and Poisson’s ratio
(v) to minimize the configuration error in the SOFA simulation. The color
bar represents the error range, with the dashed box highlighting the property
combination that results in the lowest error.

that of the real robot. For the solvers, the types, thresholds, and maximum
iteration numbers were empirically determined, balancing computation time
and speed based on our computational setup.

The mesh files required for the SOFA simulation setup were initially ex-
ported using the exact design file used to fabricate the soft manipulator [172].
Therefore, the dimensions and specifications of the model in the SOFA simu-
lation were identical to those of the real robot. Initially, Standard Tessellation
Language (STL) files were exported and converted to volumetric meshes for
the elastic body. The 3D Visualization Toolkit (VTK) file format was used to
reconstruct the bellow model. As shown in Figure 4.2-(B), the cavity mesh
(green mesh) only required surface information since it was used to define
pneumatic actuation. Therefore, the STL mesh files were directly utilized for

this purpose.
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4.4.3 Material Characterization and Property Estimation

As shown in Figure 4.4-(A), dogbone specimens were printed using Elastic
50A Resin V2 (Formlabs) following ASTM D638 Type 1V standards. Tensile
tests were conducted at a crosshead speed of 0.01 mm/s under room tem-
perature conditions (20°C) using a tensile tester model, with 20 repetitions
per sample group. Young’s modulus (E) was extracted from the initial linear
region of the stress-strain curve (up to 3% strain), while Poisson’s ratio (v)
was initially set based on the material properties.

To calibrate the FEM model, both the material parameters and the solver
configurations were refined to match the physical behavior of the soft manip-
ulator. The SOFA simulation scene incorporated appropriate boundary con-
ditions and custom plugins, with Young’s modulus (£) initially derived from
tensile tests and Poisson’s ratio (v) from the manufacturer’s specifications.
However, discrepancies between the simulated and experimental behaviors
necessitated further tuning. A grid search around the nominal values was
performed to minimize configuration error with respect to the real robot.

Although initial estimates of E and v were obtained from material test-
ing and datasheets, sim2real mismatches motivated a refined search. A two-
dimensional sweep was performed around the nominal values. For each pair
(E,v), SOFA simulations were executed, and the configuration error was cal-
culated as the RMSE between the simulated and experimental TCP positions
and the orientations of the end effectors. The optimal parameter pair was

selected to minimize this error, as visualized in Figure 4.4-(B).

4.4.4 Domain Mapping Functions

In the SOFA environment, the pressurized cavities were simulated using
defined boundary conditions and were solved with quadratic program (QP)
solvers [169]. A multilayer perceptron (MLP) was employed to correct for dis-

crepancies between the real-world pressures (Pg) and the simulated pressures
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Figure 4.5: (A) Input pressure mapping and calibration process between the
real robot and the FEM model, achieved using motion capture data (Xg) to
align the dynamics between the two domains. (B) Snapshot collection from the
SOFA simulation, where the three bellows were actuated with varied pressures
(Ps) and external forces (7s). The right plot presents the position data (Xg)
collected over the simulations.

(Ps).
Ps = frs(Pg), 4.1)

This function, fgg, calibrates the input pressures that are required to achieve
consistent TCP positioning between the two domains. As illustrated in Fig-
ure 4.5-(A), the network maps the measured inputs, which include pressures
(Ps € R?) and external forces at the TCP (7 € R?), to the estimated dynamic
states (X, X). The detailed information regarding this mapping process, loss
function and the hyperparameters used for this MLP are provided in Appendix
B.

4.4.5 Model Order Reduction by Proper Orthogonal Decomposition

To enable an efficient simulation while preserving the essential deformation
characteristics of the soft manipulator, Model Order Reduction (MOR) was
applied using the Proper Orthogonal Decomposition (POD) method [41, 44].
The full-order dynamics of the deformable manipulator are governed by the

following equation.
M(p) p = P(1) - F(p,p) — H' A(1). (4.2)
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Here, the high-dimensional nodal state of the FEM model at each time step
is denoted as p(¢) € R, where N is the number of mesh nodes, which was
initially 4327. The terms M, P, F, H, and A represent the mass matrix, ex-
ternal pressure-induced forces, internal elastic and damping forces, constraint
Jacobian, and Lagrange multipliers, respectively.

The MOR process began by constructing a snapshot matrix Sn € R3V*M

through the collection of M time-series nodal states from the SOFA simulation.

Sn = [p(tl)’ p(t2)’ SRR p(tM)] (43)

These snapshots were obtained by applying randomized pressure inputs and
external forces to the FEM model to sufficiently explore the configuration
space. A total of M = 20,000 samples were collected. Singular Value De-
composition (SVD) was then applied to the snapshot matrix Sn to extract the

dominant spatial deformation modes.
Sn=UZV". (4.4)

In this decomposition, the matrix U contains the orthonormal spatial POD
modes, X holds the singular values, and V7 represents the temporal coefficients.
On a workstation equipped with an AMD Ryzen 9 processor and 128 GB
of RAM, the full SVD of the matrix Sn € R!2981X20000 wag completed in
approximately 20 minutes using multi-threaded CPU execution. From this,
the first r = 1223 dominant modes were retained to construct the reduced
basis.

® = U, e R3NV¥1223, (4.5)

The high-dimensional nodal state could then be approximated by projecting it

onto this lower-dimensional subspace.
p(?) ~ ®a(r). (4.6)
Here, a(7) € R!?%3 denotes the generalized coordinates of the system within the
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reduced space. By substituting this approximation into the full-order dynamics

and applying a Galerkin projection, the reduced-order system is obtained.
M, 4 = P.(f) — F.(a,a) - H' A,(r). 4.7)
The reduced matrices expressed with lower “r" are defined as follows.

M, = ®"M(p)®,
P.(1) = ®'P(1),
F,(a,a) = ®'F(da, ®a),
H, = ®'H, A=A

(4.8)

The mass matrix M(p) was precomputed using the SOFA FEM engine with
a constant material density of 1040 kg/m>. The external force vector P(t)
was generated using pressure constraint conditions in SOFA library, while the
internal force term F(p, p) included a corotational FEM model with Rayleigh
damping. The constraint Jacobian H captured the influence of fixed supports
and contact constraints.

This reduced-order formulation significantly accelerated the simulation
while maintaining sufficient accuracy for control and learning. The reduced
coordinates a(z) were subsequently used to construct a compact state vector
Xs(t) € RNs, which contains physically meaningful quantities required for
learning, such as the TCP position, curvature, arc length, and orientation. These
reduced-order representations served as the input features for the dynamics

models and learning policies developed in this work.

4.5. Dynamics modeling using surrogate model
4.5.1 Transformer-based Physics-Informed Dynamics Modeling

The dynamics model was designed to predict the Cartesian velocity of the
manipulator based on a time-series of its configurations and the applied forces

based on the calibrated FEM model. As shown in Figure 4.6, the entire structure
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Figure 4.6: Architecture of the data-driven dynamics model combining a Trans-
former encoder with physics-informed residuals. The training objective inte-
grates data loss and physical constraints into a unified loss function.

of this dynamics model was trained using the dataset collected from the SOFA

simulation. The input (s;) at each time step was a vector defined as
s, = [Xs(1), Ps(1), 7p(1)] € RV, 4.9)

A sequence of m = 10 past steps was collected to form the input sequence for
the model.
Xi = [Si—m1s - .., 8] € RIOXWNs+6), (4.10)

This input tensor was first projected into an embedding space of dimension
128 via a linear layer, followed by the addition of positional encoding.

The sequence was then processed by a Transformer encoder, 7., [176].
This encoder consisted of two attention blocks, each containing a multi-head
self-attention mechanism with four heads and a feedforward layer with a hidden
size of 256. Layer normalization and residual connections were applied using
a pre-norm structure, and no dropout was used during training. The output
of the encoder corresponding to the final time step was extracted as a latent
vector Z, € R!?% which serves as a context-aware summary of the system’s

history for downstream dynamics modeling.

Z; = Tene(Xy). (4.11)
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This latent vector was subsequently passed to a Physics-Informed Neural
Network (PINN) [177]. The PINN was implemented as a multilayer perceptron
with three hidden layers of size 128, each followed by a ReLLU activation
function. The output of the PINN was the predicted Cartesian velocity of the

manipulator.
Xs(r+1) = fornn(Zi). (4.12)

The training of this hybrid architecture was guided by a combined loss function

that integrated both a data-driven term and a physics residual term.
Liotal = L7+ ALp. (4.13)

The data-driven loss, L7, measures the direct error between the predicted
and ground-truth velocities. The physics residual, £p, measures how well the
network’s prediction conforms to a simplified multibody dynamics model [41,
44].

R, = M(Xs(1)Xs(t) = Ps(1) + FXs (1), Xs(1) + HTA(1).  (4.14)

Here, M denotes the mass matrix, which was precomputed from the POD-
reduced FEM model assuming a material density of 1040 kg/m>. The term
Pg(7) is the pressure-induced force vector, F represents the internal elastic and
damping forces computed with Rayleigh coefficients @ = 0.05 and 5 = 0.005,

and H' () captures the constraint forces. The total loss was thus defined as

Lioar = 1Xs(t + 1) = Xs(t + D> +2 - IR 1%, (4.15)
~——
Lr Lp

where the loss weight 4 was manually selected as 0.15 to balance data fidelity
with physical consistency [178]. The model was trained for 300 epochs using
the Adam optimizer with an initial learning rate of 0.0005 and a batch size of
64 on a dataset of 20,000 samples. All ground truth velocities Xg(¢ + 1) were

obtained from the SOFA simulation dataset. This process results in a learned
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forward dynamics function of the form
Xs(r+1) = fs(Xy), (4.16)

where fs denotes the combined Transformer and PINN model that maps an
input sequence X; to the predicted Cartesian velocity while preserving physical

consistency.

4.5.2 Inverse Dynamics Modeling

The inverse dynamics model was trained to infer the required pneumatic
pressure inputs (P) that produce a desired Cartesian velocity, given the current
system state and external contact forces. This process is undetermined and
cannot be solved by a conventional equation solver due to the redundancy
and system compliance. Therefore, the approach using a supervised neural
network with an auxiliary cycle-consistency loss was used to enforce physical
plausibility as well as to determine the unique solution of the pressure input
when a high-dimensional desired state (X(¢)) is given.

The input to the model was a concatenated vector comprising the reduced-
order state vector Xg(7), the external contact wrench Te(7), and the desired
velocity Xg(¢ + 1). This input was fed into a multilayer perceptron, fST , which
was implemented with three hidden layers of size 128 using ReLLU activation.
The network outputted a 3-dimensional vector Pg(r) € R3, representing the
estimated pressure inputs to the three cavities.

The primary training loss was the supervised L2 loss between the pre-

dicted and true pressure values.
Lg = 11Ps(0) = Ps(n)]*. (4.17)

To improve consistency with the physical dynamics, a secondary cycle-consistency
loss was added. This was implemented by passing the predicted pressure
through the pretrained forward model fs to obtain a synthetic prediction of

velocity. The new input sequence X/ was constructed by replacing the true
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pressure in the original sequence with the predicted one. The resulting veloc-

ity was compared against the ground truth.
Leye = |1£s(X)) = Xs(e + D> (4.18)
The total training loss for the inverse model was defined as

Ll =L+ B Loy, (4.19)

total —

where 8 = 0.1 was empirically selected to balance direct regression and cycle
consistency. Training was performed for 200 epochs using the Adam optimizer
with a learning rate of 0.001 and a batch size of 64 on the same dataset used

for forward modeling.

4.6. Surrogate Model for Physics-based Simulation

A data-driven surrogate model was developed to approximate the deformation
behavior of the soft manipulator and enable accelerated simulation. The model
replicates the evolution of the configuration states Xg, including the motion of
the TCP, and was calibrated to match the ROM observed in the high-fidelity
SOFA simulation.

This approach preserves essential deformation and contact characteristics
while offering a reduced computational cost, making it well-suited for RL and
online control tasks. As shown in Figure 4.7-(A). The model was ultimately
implemented in a URDF (Unified Robot Description Format) file with explicit
definitions of mass distribution, joint limits, and link dimensions, demonstrat-
ing dynamic consistency with the reference configuration space of the real

robot.

4.6.1 Geometric Design: Based on FEM Node Analysis

The geometric structure of the surrogate model was determined through a
node-level analysis of the high-fidelity FEM model.
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Surrogate model Rotation  Prismatic
(B) joints joint

Figure 4.7: (A) Structure of the surrogate model composed of planar links
connected by rotational joints (6y,, 6,,) and prismatic joints (64). (B) Config-
uration matching between the surrogate model and the real robot, illustrating

consistent deformation behavior and parameter correspondence between the
two domains.

Contact Boundary Node Analysis One of the crucial pieces of information
about the deformable manipulator was the contact boundary, and this was
estimated from the FEM nodal data. First, six boundary nodes (Xp) were ex-
tracted from each of the six bellows segments to define the collision boundary
(B.) of the deformable body. To analyze the hexagon formed by these nodes
across a large number of random actuation samples, a regression plane was
fitted for each layer to provide a consistent planar representation of the nodal

distribution.

The estimation of a regression plane from a set of 3D input points v € R™3
is based on Singular Value Decomposition (SVD).
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First, the average center of the input points v is calculated as:
1 n
V= Z: v;. (4.20)
1=

The points are then centered by subtracting the mean, v., = v — Vv, and
SVD is performed:
[U,S,V] =svd(vep). (4.21)

The normal vector to the regression plane, 7, is obtained as the last
column of V. The plane equation is defined as n,x + nyy + n,z+d =0,

where d = -1 - V.

Each input point v; is orthogonally projected onto the estimated plane
using:
5p :ﬁ-vi+d, Vpi:Vi—ép'ﬁ. (4.22)

Through this process, the average contact radii by layer (R;) were measured,

and the smallest of these values, Ry, was used as a conservative constraint in

the surrogate geometry, as illustrated by the red dashed circles in Figure 4.8-

Structure Design Based on this geometric characterization, the surrogate

model comprises six identical planar links stacked vertically. The overall

height, diameter, and thickness of the links were derived from the length

of the arc (/) and the contact boundaries as shown in Figure 4.9.

4.6.2 URDF Implementation and Design Specifications

The surrogate model was designed in an URDF file using XML format.

* Link Composition: Two types of surface links were used: the links that
compose the center body and the plane bodies placed at the top and

bottom of the model.
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Figure 4.8: (A) Reduced FEM mesh with layer-wise boundary nodes (Xj)
marked in blue. These nodes define the potential collision boundary (B.)
of each segment and are preserved during model order reduction to ensure
contact fidelity. (B) Contact boundaries computed by projecting Xy onto re-
gression planes fitted to each layer. Red dashed circles denote the average
radial boundary R;, and the minimal boundary radius R, was selected as a
design constraint for the surrogate model.

* Mass: The actual soft manipulator’s mass of approximately 820 g was

equally distributed across all layers to set the virtual weight.

» Joint Configuration: Each pair of adjacent links is connected via one
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Figure 4.9: Design parameters of the surrogate model

prismatic joint (64,) to mimic longitudinal extension and two rotational
joints (6y,, 6,,) to enable omnidirectional bending. The rotational joints
were defined as dummy joints with no mass components. Therefore, a
total of eight rotation joints and three prismatic joints were defined in

the surrogate model.

Ensuring Physical Realism via Joint Constraints To ensure that the surro-
gate model exhibits physically realistic deformation behavior, joint constraints
were applied to adjacent joint groups. Without such constraints, the model can
exhibit unrealistic behavior, such as large curvature changes between links, as
shown in Figure 4.10-(A), which are not observed in the real system. To pre-
vent abrupt bending or unrealistic shape transitions, the following inequality

constraints were enforced:

|9xi - 0x1+1| < 5x,
10y, — 0y,.,] < 6y, and (4.23)

04; = 0a;,,| < 64,

where 6, = 0.01, 6, = 0.01, and 6, = 0.005 are constants that limit inter-joint
variations. These bounds were chosen to reflect the smooth, continuous curva-

ture observed in the real robot. The absolute joint limits were also constrained
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to reflect the physical range of motion:
6,,0y, € [-0.2,0.2] and 6, € [0,0.02]. (4.24)

These constraints were applied within the control environment during
optimization and policy rollout to restrict the exploration space to feasible
regions. They enforce spatial smoothness across joint segments, consistent
with the continuous curvature observed in physical continuum robots. As
a result, applying the grouped constraints results in smooth and physically

plausible postures, as shown in Figure 4.10-(B).

4.7. Aligning Between Two Actuation Spaces

To bridge the high-fidelity FEM simulation and the computationally efficient
surrogate model, a data-driven mapping to align their actuation spaces was
established. The FEM model is actuated by pressures (Ps € R?), whereas the
surrogate model is controlled by a vector of joint angles (§p € RN«), where N,
is the DOF of the surrogate model. The forward mapping f : Ps — 6p was
trained to ensure that a given actuation command produces consistent motions
across both simulations (Xg ~ Xp), as illustrated in Figure 4.11.

This mapping was constructed by first generating a dataset of corre-
sponding actuation pairs. A constrained optimization problem was solved that
iteratively adjusted the joint angles @p to minimize the Euclidean distance
between the surrogate model’s TCP position, Xp(€p), and a target TCP posi-
tion, Xg(Ps), obtained from the FEM simulation. The optimization problem

is formulated as:
0p = arg min IXp(0p) — Xs(Ps) |2, (4.25)
P

subject to the joint limits:
Ly < 0p < Upy. (4.26)

The optimization problem was solved using the limited-memory Broy-
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Figure 4.10: (A) Example of an unrealistic configuration in the surrogate
model, where multiple curvatures appear across joint segments, deviating from
the physical behavior of the real robot. (B) Example of a feasible configuration
generated by applying joint constraints, ensuring smooth deformation.

den—Fletcher—Goldfarb—Shanno algorithm with box constraints (L-BFGS-
B) [179]. This method is well-suited for handling the redundant DOFs of the
surrogate model while ensuring the resulting configurations remain physically
feasible. The procedure is detailed in Algorithm 1.

After collecting a dataset of optimized joint configurations 6 across
a wide range of pressure inputs Pg, a fully connected MLP was trained to

approximate this mapping directly:
0p(1) = fsp(Ps(1)), (4.27)
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Figure 4.11: Mapping between pressure inputs (Pys) and joint angles (6p) across
two simulation environments. The dataset, derived from SOFA simulation
snapshots, was used to optimize state alignment between the SOFA and URDF
models. The trained forward model predicts joint angles (6p) from pressure
inputs (Pg), minimizing the discrepancy in predicted states. The rightmost
figure shows the resulting alignment of states under varied inputs in both

simulation domains.

where fin,p denotes the learned function approximator. This network provides a
continuous and computationally efficient translation from pressure commands
to joint space signals, allowing the surrogate model to replicate the behavior
specified by the FEM simulation’s actuation space.

The complete mapping pipeline, from optimization-based correspon-
dence to the learned regression function, is depicted in Figure 4.11. This
cross-domain alignment serves as a critical bridge for sim-to-sim transfer,

enabling efficient reinforcement learning in the surrogate domain while pre-
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Algorithm 1 L-BFGS-B Optimization for Actuation Space Mapping

1: Input:
¢ Target TCP position Xgareer € R3 (from FEM)
» Initial guess for joint angles 8y € RNa
* Joint limits Ly, Ug € RNa
e Maximum iterations Npax
* Convergence tolerance € > 0
2: Output: Optimized joint angles 67

3: Define objective function:

£(0) = [Xp(0) - Xtarget”Z
4: Solve optimization problem:

0p = argrglinf(Hp) subjectto Lg <0p < Uy
P

5: Initialize: @p «— 0

6: Set iteration counter k «— 0

7: while not converged and k < Ny do
8 Compute current TCP position:

Xactual = XP(GI;J)

9: Compute gradient of the objective function: V f (9';,)
10: Update joint angles using an L-BFGS-B step:

05t = 0% — " H V£ (0%)

(where a* is step size and Hy, is the inverse Hessian approximation)
11 Enforce joint limits (projection):

0% = clip(65!, Ly, Up)

12: if [VA(O5 )| < eor |05 — 05 < € then
13: break

14: end if

15: k—k+1

16: end while

17: return 6,
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Figure 4.12: Customized RL environment setup illustrating the interaction
between the agent and the environment across three tasks involving position
and force controls.

serving the physical fidelity of the FEM reference.

4.8. Customized Gymnasium Environment

4.8.1 Environment Setup

A customized RL environment was developed for evaluating the effectiveness
of the surrogate model and the trained dynamics. The environment was built for
full compatibility with Gymnasium interfaces [180], exposing a conventional
agent structure that includes an observation (O;), action (a;), and reward (R;).
A modular class structure was implemented to manage the core interaction
logic, including actuation, contact detection, and state updates. The overall
structure of the environment and the agent’s interaction across the defined

tasks are illustrated in Figure 4.12.

4.8.2 State and Action Spaces

The observation vector provided to the agent includes comprehensive joint

and TCP-level information, summarized as:

Ol‘ = [GP’ 9P9 XP’ XP’ Text] s
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where 0p and @ p denote the joint angles and velocities, Xp and Xp denote the
position and velocity of the TCP, and 7y, is the external contact force vector
measured at the TCP.

The action space consists of continuous, joint-level actuation commands:
ar = 65" e RN,
where N, is the number of actuated degrees of freedom in the surrogate model.

4.8.3 Force Calibration of the Surrogate Model

Force calibration was performed to match the realistic values measured using
the PyBullet simulation environment. Torque and force were measurable for
all joints using the provided functions, and a TCP node was defined to measure
contact forces that were included in the state information. Calibration between
the real measured force (Fg) and the simulated force (Fp) was conducted.
As shown in Figure 4.13-(A), the six axis load cell was attached to the end-
effector of the robot and then fixed to the jig. The movement of the robot
was constrained and the load cell measured the resultant force generated by
the three pressure levels applied. Similar setup was realized in the Pybullet
environment, in this case the functions were simply used to measure the force
measured at the TCP node. Various combinations of actuation inputs were
tested in both domains. Figure 4.13-(B) illustrates the normalized force vector
(nr) in the x-y-z coordinates.

Since the mapping between the two actuation spaces was derived as
fsp, the magnitude of the resulting force at specific configurations could be
compared. The magnitude of the measured force at the TCP in the simulation is
shown in Figure 4.13-(C). Each vector component matched the real data from
the load cell, as shown in Figure 4.13-(D). A linear fit of the force components
(F'rir) was obtained component-wise (F), F), and F). Linear fitting parameters
were calculated based on the experimental data and remained unchanged across

all task implementations.
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Figure 4.13: (A) Experimental setup for force calibration with the real robot,
showing the load cell fixed to the frame and the jig. The robot posture was
fixed and the resultant force at the TCP (F) was measured as a function of
the pressure input (Pg). In the PyBullet simulation, a similar fixed stage and
jig were built, where the resulting force (Fp) was measured as the joint angle
(6p) varied. (B) Normalized force vector (nr) in x-y-z coordinates for various
actuation in both simulations. (C) Measured force magnitude at the TCP in the
PyBullet simulation across different configurations. (D) Comparison of force
vector components (Fy, Fy, and F;) between the real robot and the simulation,
with linear fit curves used for calibration.

4.8.4 Task Design and Implementation

For evaluating the agent’s capabilities under varying physical objectives, from
geometric accuracy to compliant contact behavior, three distinct control tasks
were defined.

* Task 1 (Trajectory Tracking) targets pure position control in Cartesian
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space. The agent must follow a predefined reference trajectory Xer
composed of 100 3-D coordinates. Two shapes were used for testing
different dynamics: a circular path (radius of 25 mm on a plane parallel
to the x — y plane) and a star-shaped path (inscribed in a 25 mm radius

circle, designed for testing rapid direction changes).

Task 2 (Force Control) focuses solely on force regulation. The agent

must apply internal joint commands to generate a desired contact force

*

at the TCP, aligned with a target external force vector 7.

Task 3 (Hybrid Control) combines position and force objectives. The
agent must follow a tilted elliptical trajectory on a sloped contact surface
S:er while maintaining a constant normal force of 1 N along the z-axis.

The trajectory is defined by the parametric equations:

x =25co0s(6;)
y = 25sin(6;) (4.28)

z=10cos(6;, — ) + 10  [unit : mm],

where 6;, ranges from O to 2. An example of this hybrid control task

is visualized in Figure 4.14-(C).

4.8.5 Reward Function Design

A composite reward function was designed for simultaneously guiding the

agent toward position tracking and force regulation objectives:

R=aR, + (1 - )Ry, (4.29)

where R, and Ry are the normalized rewards for position and force, respec-

tively, and a € [0, 1] is a scalar weight to balance their contributions.

The position reward, R,, encourages sequential trajectory execution. It

is a function of the error 6, = [[Xp — Xie||2, but rewards are conditioned
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Figure 4.14: (A) (left) Sequential position rewards conditioned on the order of
trajectory points, ensuring the agent follows the path in the correct sequence.
(right) The force error (6 ) computed with the target force vector. (B) Reward
function shapes for position (R,) and force (Rr), showing their respective
contributions. (C) Predefined trajectory (Xyef) consisting of m coordinates on
the target surface (Syer). The example shown corresponds to Task 3, where the
trajectory follows an elliptical path on the ramp surface. (D) Manifold of the
combined reward function (R), where the weighting factor (o) determines the
balance between the position and force rewards.

on the current step index, so only proximity to the *next* target point in

the sequence contributes to the return, as visualized in Figure 4.14-(A). The

force reward, RF, is determined by the RMSE 6 between the measured and

89



reference contact forces. The specific formulations are:

1
R, =———,
71+ 1006, (4.30)
Rr=1-0.56F.

These reward shapes, illustrated in Figure 4.14-(B), were chosen empirically
to ensure smooth reward gradients and stable training. No formal optimization
was used for determining the reward structure; the described formulations were
selected based on a trade-off between positional accuracy and force stability
observed during testing. The final profile of the combined reward function is
depicted in Figure 4.14-(D).

4.8.6 Policy Learning and Evaluation

For training agents in hybrid control, expert demonstrations and strict precision
constraints were incorporated. The agent was required to follow trajectories
with an inter-point resolution below 1 mm and achieve a target accuracy of
0.1 mm.

Expert data for behavioral cloning (BC) and offline pretraining was gener-
ated using an approximate inverse dynamics model from the FEM simulation.
The dataset consists of state-actuation pairs:

N

Expert dataset = {((0x, 0y.d), (x,.2))},_, (4.31)

where (0y, 0y, d) are the joint inputs and (x, y, z) is the resulting TCP position.

Three learning algorithms were evaluated on the most challenging hybrid
task (Task 3): Proximal Policy Optimization (PPO), Soft Actor-Critic (SAC),
and BC. All agents successfully learned stable control policies. As shown
in Figure 4.15, the BC-enhanced agent achieved the highest final reward after
100K episodes, confirming the benefit of using expert priors from FEM-driven

demonstrations.
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Figure 4.15: (A) Normalized reward progression by episode for Task 3 using
the PPO agent. (B) Performance comparison of hybrid control (Task 3) across
three agents, showing normalized reward improvements over training episodes.

4.8.7 Sim-to-Real Policy Transfer

The application of a trained policy 7 to the physical robot was accomplished
through a sim-to-real transfer procedure. The policy, trained in the surrogate
model environment, outputs actions as joint angles, 9p(t). However, the real
robot is actuated by pressure inputs. A mapping function fsp was used to
bridge this domain gap by converting the policy’s joint angle outputs into

corresponding pressure profiles:

Pr(t) = fsp(0p(1)), (4.32)
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where 0p(1) = 7*(0|0;) and Pg(¢) is the target pressure vector for the real
robot.

The calculated pressure profiles were transmitted to the robot’s bellows
via pressure regulators. A real-time control loop synchronized these commands
with the hardware execution. The resulting TCP position and contact forces
were measured using a motion capture system and load cells to validate the

performance of the transferred policy.

4.9. Experiment
4.9.1 Sim2Real Learning Framework

The proposed learning pipeline was evaluated across three distinct domains:
a real soft manipulator, an FEM simulation in SOFA, and a physics-based
surrogate model in physics-based simulation. A pneumatic soft manipulator,
configured as a parallel mechanism with three bellow actuators between two
rigid plates, was used consistently across all platforms. The bottom plate
was fixed to a base frame, while the top plate moved freely in response to
internal pressure changes. For tasks requiring physical interaction, a load
cell and custom tool tips were attached to the top plate to permit external
force application and measurement, as depicted in Figure 4.16. The complete
experimental setup includes the placement of optical markers for the motion
capture system for the ground truth data of the soft manipulator.

Actuation for both the real and simulated systems was constrained to
a pressure range of —20 kPa to 35 kPa. This range was selected to ensure
structural safety and maintain consistency in the ROM. The surrogate model
replicates this ROM through joint angle actuation, which is derived from
learned mappings.

The sim2real transfer pipeline is depicted in Figure 4.17-(A). A trained
policy, w(6p(t)|O;), generates joint commands. These commands are first
converted into simulated pressures via the mapping function fsp and subse-

quently into pressures for the real robot using fpr. The final pressure signals
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Figure 4.16: Motion capture setup used for collecting real-world robot data,
incorporating the optical markers and the cameras for precise state estimation.

Pg(t) are smoothed by a moving average filter before being sent to the hard-
ware. While the policy inference loop operated at over 300 Hz, hardware
constraints limited the real system’s actuation frequency to 2 Hz. The quanti-
tative analysis of the hardware system bandwidth was conducted and reported

in the Results section and Figure 4.18.

4.9.2 Data Acquisition and Agent Training

Data collection was performed comprehensively in each domain. In the real
system, 5000 distinct pressure configurations within the range of —20 kPa to
30 kPa were applied to each actuator. The system was held at each configuration
for stabilization, and the resulting motions were recorded by the motion capture
system.

In the FEM domain, pressure inputs (Pg) and external contact forces (7,;)
were applied to the model using the same pressure range. Contact forces did
not exceed 2 N, corresponding to the manipulator’s maximum payload. With a
simulation time step of 0.01 s, outputs were generated at 5.56 Hz. This process
yielded approximately two million samples, which were used for training the

dynamics model in Equation 4.16.
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(B)

Contact object

Sim2real transfer

Figure 4.17: (A) Sim2real transfer pipeline illustrating a real-time mapping
between the PyBullet simulation and the real robot. (B) Mirrored real-world
task implementation setup in the PyBullet environment, including the force
measurement units and a contact object.

For the physics-based surrogate model, joint angle limits were derived
from the FEM-ROM through the mapping function fsp. The surrogate model
simulation was sampled at over 1000 Hz, and each configuration was executed
for 20 control steps, enabling the efficient generation of a training dataset for
reinforcement learning.

The surrogate model served as the basis for a custom Gym-compatible
RL environment. Its observation space was defined to include joint states
(6p,0p), TCP position and velocity (Xp, Xp), and the external contact force
(Text)- The action space was composed of continuous joint commands. Three
agent architectures were tested as mentioned: SAC [181],PPO [182], and
BC [183]. These agents, representing off-policy, on-policy, and supervised
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Figure 4.18: Quantitative characterization of the hardware-imposed control
bandwidth is presented by plotting the mean position error versus input pres-
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Figure 4.19: Three types of Sim2real tasks: 1) trajectory tracking, i1) force

control, and iii) hybrid control.

imitation learning methods respectively, were implemented using the stable-

baselines3 library [184].

4.9.3 Task Setup and Evaluation

Validation of the framework was performed using three distinct control tasks

of increasing complexity, as shown in Figure 4.19. Each task was implemented

on both the hardware setup and in the simulation.

The trajectory tracking task required the agent to follow predefined
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Cartesian paths, such as circular and star-shaped trajectories. A circular path,
for instance, was defined by Xe¢(¢) = [r cost, rsint, zgp]. The trained policy’s
ability to reproduce these paths on the real robot with high spatial accuracy
was confirmed by comparing the simulated trajectory Xp(f) with the real
measurement Xg (7).

The force-induced deformation estimation task assessed the agent’s
ability to predict displacement resulting from external loading. A weight was
applied to the TCP, causing the configuration to shift from its unloaded state
Xw/o to a deformed one Xy,. The agent’s objective was to infer the deformed
position X,, based on the applied force (7.,;) and the current state of the
manipulator.

The hybrid control task merged trajectory tracking with force regulation.
Here, the agent was tasked with following a tilted elliptical path while sustain-
ing a constant normal contact force. The agent achieved accurate performance
in both objectives, producing contact force vectors that closely matched the
target values throughout the maneuver.

For ensuring effective policy transfer, all tasks were conducted in a mir-
rored physics-based simulation. This simulation featured identical geometry,
contact surfaces, and force measurement instrumentation, as shown in Fig-
ure 4.17-(B), to maintain consistency between the simulation and real-world

deployments.

4.10. Result
4.10.1 Calibration and Validation

A comparison of the reachable configuration spaces was performed for the
real robot, the FEM simulation, and the surrogate model under identical actu-
ation constraints. The resulting Cartesian trajectories, shown in Figure 4.20,
indicate that the surrogate model successfully covered the entire reachable
space observed in both the FEM simulation and the real robot. This included

all positions recorded during physical experiments. A close agreement in the
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Figure 4.20: Comparison of the reachable configuration space across the three
domains: real robot, FEM simulation, and surrogate model. Each boundary
represents the range of motion (ROM) achieved under actuation constraints.

range of motion was observed between the FEM model and the real robot.

Differences between the FEM model and the real robot were quantified
using five configuration variables: tip position (pgs), tip velocity (ps), arc
length (Ig), orientation (gs), and curvature (ks). The errors for each variable
were normalized using min-max scaling within their domain-specific ranges.
Figure 4.21-(A) visualizes the normalized mean errors and standard deviations,
with a detailed summary provided in Table 4.1.

Translations between domains were handled by two neural network map-
pings: frs (real to simulated pressures) and fsp (simulated pressures to sur-
rogate joint angles). The average prediction error for frs was found to be
0.13 kPa. For the fsp mapping, the average prediction errors were 0.32 deg
for rotational joints (6, ) and 4.23 mm for prismatic joints (6,), as detailed in
Table 4.1. Notably, these joint-level errors do not propagate directly to the end-
effector’s Cartesian position. This outcome is a result of the soft manipulator’s
kinematic redundancy, where the mapping from a three-dimensional pressure
input to a higher-dimensional joint space permits multiple joint configurations

to achieve a similar end-effector pose.

97



(A)

Position (e, )
140
Actuator

017 .
length (e;,) AN Velocity (ey;)

o

®  Average error
(3  Lower bound
(J  Upper bound

o4
*o Orientation (e, )

(B)
0.195 07
—06
— 0.19 A K
IS 57 £ os}
(g 018 )/ { g 03
02} g
0.175 / ol
/.‘ 0.1 /
#
017 o - “ - g
017 0.175 0.18 0.185 0.19 0.195 0 01 02 03 04 05 06 07
[Xg| [mm] |Xs| [mm/s]

Figure 4.21: (A) Normalized average errors and standard deviations for key
configuration variables, comparing FEM simulation and real-world measure-
ments. Metrics include position, velocity, orientation, curvature, and actuator
length. (B) Prediction accuracy of the learned forward dynamics model fs,

showing the absolute values of the predicted state )25 and velocity Xg com-
pared to ground truth from the FEM simulation.

4.10.2 Learned Dynamics Model Results

The performance of the learned forward dynamics model (fs) was assessed
using validation sequences from the FEM simulation. The predicted states ()25)
and velocities (;(S) over time are presented in Figure 4.21-(B). Quantitative
prediction errors, reported in Table 4.1, show mean errors of 3.35 mm for
position and 14.56 mm/s for velocity.

The transfer of the learned forward dynamics model fs to the surrogate’s
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Mapping Variable Value (Mean * Std)  Unit

MLP functions Jrs 0.13 +0.02 kPa
fsp Ox,y: 0.32 +£0.02 deg
04:4.23 £0.06 mm
Model calibration (Real-SOFA) Is 0.30 £ 0.06 mm
qs 0.35 £ 0.08 deg
Ks 0.21 £0.04 mm~!
Ps 1.40 £ 0.62 mm
Ds 12.69 + 4.29 mm/s
Dynamics learning (SOFA-PyBullet) Xp 3.35+043 mm
X, 14.56 + 4.38 mm/s
Inverse dynamics Ps 0.38 £ 0.05 kPa
6, 0.17 +0.04 deg

Table 4.1: Mapping errors between domains

joint space using the mapping fsp is illustrated in Figure 4.22-(A). For a given
target state (Xs) and velocity (Xs), the corresponding joint configuration (Ep)
was estimated and then applied to the surrogate model.

Actuator pressures for desired motion targets were estimated by the in-
verse dynamics model. This model predicted the required input pressures
(ﬁg,i) needed to drive the system to a target state (Xs) and velocity Xs).
Figure 4.22-(B) shows the estimated pressures for multiple samples. A mean
pressure prediction error of 0.38 kPa and a corresponding joint angle recon-

struction error of 0.17 deg are reported in Table 4.1.

4.10.3 Policy Evaluation

An evaluation of the trained reinforcement learning agents was conducted
across the three control tasks. Each policy was trained in the customized gym
environment with the surrogate model and subsequently transferred to the real
robot using the mapping functions fsp and fpr (Figure 4.23). Policies were
trained using three different RL algorithms, with reward progressions detailed

in the previous RL environment section. For each task, the policy exhibiting
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Figure 4.22: (A) Optimized mapping from FEM dynamics to the joint space

of the surrogate model, aligning the predicted states Xp and Xp over time
[z, 7+ At]. (B) Inverse dynamics results predicting actuator pressures Py from
target motion states, demonstrating the capability to reconstruct input pressures
from desired trajectories.

the highest final reward was selected for the final evaluation.

Task 1 involved the execution of predefined Cartesian trajectories. The
tracking results for both the simulation (Xp) and the real system (XgR) are
presented in Figure 4.23. Table 4.2 reports the average tracking errors, with
surrogate-level errors of 1.02 mm (circular) and 1.24 mm (star-shaped), and
corresponding sim2real errors of 3.38 mm and 6.79 mm.

Task 2 required the agent to estimate the resulting position under ex-

ternal loading (7ex(). Figure 4.24 displays the unloaded state (X,,,) and the
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Figure 4.23: Trajectory tracking results for Task 1. The plot on the left shows
the prediction of the surrogate model in simulation (Xp, blue), while the plot
on the right shows the sim2real results using the real robot (X, red). Both
results follow the predefined target trajectory Xir.

target deformed position (XW), with the agent’s predictions (X,,) shown from
multiple trials. The average position errors relative to the simulation target
were 3.20 mm in simulation and 4.68 mm in sim2real, as listed in Table 4.2.

Task 3 combined trajectory following on a tilted ellipse (Xyef) With
contact force regulation (F},). The executed trajectory is shown in Figure 4.25-
(A), while the force tracking error and component-wise force profiles are
shown in Figures 4.25-(B) and (C). As reported in Table 4.2, simulation errors
were 1.35 mm for position and 0.55 N for force, with corresponding sim2real
errors of 4.20 mm and 0.70 N.
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Figure 4.24: Task 2: deformation compensation under external load. The un-
loaded position Xy, and the externally deformed position X, are shown as
red crosses, while the corrected position predicted by the agent X, is shown
as blue circles.

4.10.4 Additional Validation of Performance and Robustness

Three additional experiments were conducted for further validation of the
proposed sim2real agent in more challenging scenarios. These experiments,
focusing on policy generalization, robustness to disturbances, and system lim-

itations, collectively demonstrate the practical viability of the pipeline.

Generalization to Complex 3D Trajectories The policy’s generalization
capability was evaluated using a complex, non-planar 3D trajectory not seen
during training, which required tracing a figure-eight path on a curved surface.
As depicted in Figure 4.26-(A), the real robot successfully tracked this intricate
path with precision comparable to Task 1, recording an average tracking error
of 5.34 mm. The close alignment among the reference trajectory (Xer), the
surrogate model’s prediction (Xp,), and the real robot’s execution (Xg ) confirms

the framework’s ability to generalize effectively.
Robustness to External Disturbances The robustness of the agent as a

closed-loop controller was assessed through a physical perturbation experi-

ment. During the circular trajectory task, a disturbance was induced by inten-
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Figure 4.25: (A) Task 3: hybrid control results in which the agent follows a tilted
elliptical trajectory Xef on the sloped reference surface S;f, while maintaining
contact. (B) Norm-2 force tracking error ||F — Fif|| during Task 3, showing
temporal accuracy of the contact force. (C) Component-wise tracking of the
target contact force (FY, Fy, F;) over time, confirming stable force regulation.

tionally disconnecting the air supply to one pneumatic chamber. The supply
was reconnected five seconds later to observe the agent’s recovery. As shown
in Figure 4.26-(B), this action caused a sharp deviation from the trajectory,
followed by a rapid and stable recovery, with the policy converging back to

the reference path within five seconds.

Bandwidth Limitation in Policy Rollout The system’s operational speed

is a critical factor for hardware validation. A quantitative analysis of the
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Figure 4.26: (A) Generalizability of sim2real transfer is demonstrated by track-
ing a complex 3D non-planar figure-eight trajectory not seen during training.
(B) Robustness of the RL policy is evaluated by showing successful recovery
from an unexpected physical disturbance (temporary pneumatic line discon-
nection) during a circular trajectory task.

hardware’s bandwidth was performed by measuring the mean position error
for a point-to-point task while systematically increasing the input command
frequency. The results in Figure 4.18 reveal a hardware bottleneck, with a sharp
increase in tracking error as the frequency exceeded approximately 2 Hz. This
analysis shows that the control speed is constrained by the physical response

of the pneumatic hardware, not the policy’s inference rate.
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System Task  Target Value (Mean * Std) Unit

Task 1 Xief: Convex 1.02 £ 0.61 mm
Xief: Non Convex 1.24 +£0.50 mm
RLagent Xp) k0 X, 3.20+0.52 mm
Xief 1.35+0.43 mm
Task 3 p 0.55+0.19 N
Xef: Convex 3.38 +1.49 mm
Task 1
Xief: Non Convex 6.79 £ 1.56 mm
Sim2real Xg) k2 X, 4.68 +1.77 mm
Xief 420+£1.22 mm
Task 3 p 0.70 + 0.16 N

Table 4.2: Task implementation errors

4.11. Discussion

This study presented an integrated sim2real framework for soft robot control,
which connects high-fidelity FEM simulation, dynamics modeling, surro-
gate abstraction, and reinforcement learning. The design of the framework
addresses key challenges in soft robot learning—including nonlinear defor-
mation, high compliance, and actuation redundancy—while ensuring compat-
ibility with standard reinforcement learning toolKkits.

The FEM-based model, constructed in SOFA, underwent calibration
against real robot measurements obtained from dense pressure sweeps and
motion capture data. An MOR formulation using POD enabled efficient sim-
ulation while preserving essential deformation modes. The dataset generated
from this process supported the training of both forward and inverse dynamics
models with a Transformer-PINN architecture.

Real-time simulation and policy training were facilitated by the develop-
ment of a data-driven surrogate model. This model, implemented in PyBullet
with a jointed link structure, successfully replicated the ROM and actuation
responses of the FEM simulation. Learned mappings between FEM pressure

inputs and surrogate joint angles ensured physical consistency, allowing the
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surrogate to be used interchangeably during training while remaining aligned
with FEM-based predictions.

Accurate motion prediction and actuation inference within the FEM and
surrogate domains were made possible by the forward and inverse dynamics
models. The learned dynamics generalized across unseen trajectories and
supported the generation of stable behaviors when transferred to the surrogate
model. The utilization of actuation-space mappings ensured that predictions
from the forward model could be faithfully reproduced by the joint-level
abstraction, thereby preserving temporal structure and physical consistency.

Across all evaluated tasks, the learned policies demonstrated robust tra-
jectory execution and force regulation in simulation. Upon transfer to the real
robot, the policies successfully maintained their task objectives but exhibited
increased errors. These discrepancies arose from physical phenomena not cap-
tured in the simulation pipeline, such as unmodeled contact hysteresis, actuator
latency, and material friction. Despite these factors, the sim2real transfer was
stable, indicating that the surrogate abstraction and dynamics learning compo-
nents effectively supported zero-shot deployment. Further experiments were
performed to probe the framework’s real-world capabilities. These results con-
firmed the policy’s ability to generalize to complex, non-planar 3D trajectories
not encountered during training. Moreover, the controller demonstrated no-
table robustness by successfully recovering from a large, intentional physical
disturbance, which highlights its effective closed-loop nature.

Several limitations of the current framework remain. The surrogate model,
while effective for training, does not explicitly model elastic body interactions
or distributed compliance. The incorporation of pseudo-continuum elements
or compliant joint structures could enhance realism in contact-rich scenarios.
Additionally, the inverse model’s assumption of a deterministic mapping may
limit its robustness under conditions of uncertain loading or sensor noise.

Future work will involve extending the framework to more contact-rich
tasks, such as manipulation, locomotion, or interaction with deformable sub-

strates. Improvements in transfer accuracy may be achieved by enhancing the
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fidelity of contact simulation and tactile feedback within the surrogate domain.

Although the focus of this study was a pneumatic manipulator, the archi-
tecture is modular and actuator-agnostic, allowing for its application to other
systems like fiber-reinforced actuators or tendon-driven arms. In contrast to
task-specific pipelines [82, 164,170, 185] or finely-tuned classical controllers,
this approach places a strong emphasis on generalization and adaptability.
While a classical controller might achieve superior performance on a single,
known task, the strength of the presented RL-based method lies in its gener-
alization capabilities, as shown by its success on unseen tasks. Furthermore,
unlike other RL frameworks that often report only qualitative task success,
this pipeline provides a pathway for developing controllers for high-precision
tasks demanding quantitative accuracy. This focus on quantitative, generaliz-
able, and robust performance, validated through extensive real-world experi-
ments, positions the framework as a flexible and powerful tool for developing

learning-based controllers for a wide range of complex soft robotic systems.

4.12. Summary of Part A

The overarching challenge addressed in this dissertation is the simulation gap
in deformable robotics, where a fundamental trade-off exists between the phys-
ical fidelity required to represent continuum mechanics and the computational
speed necessary for data-driven learning. While this challenge pervades the
entire robotic system, the functional requirements for simulating the robot’s
internal structure differ from those of its contact interface. Consequently, Part
A of this research has focused specifically on the domain of action, investi-
gating methodologies to model the macroscopic dynamics of the deformable
body for control and actuation.

To address this challenge, a two-stage methodological progression was
pursued. The investigation began in Chapter 3 with a classical approach, deriv-
ing a first-principles analytical model for a pneumatically actuated origami ma-
nipulator. By leveraging the geometric regularity of the Yoshimura pattern, a

closed-form kinematic model was established. While this method successfully
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enabled real-time nonlinear control, it revealed critical limitations regarding
generality and the reliance on simplifying assumptions, thereby motivating
the need for a more scalable, data-driven approach.

Chapter 4 responds to these limitations by introducing a generalizable
surrogate modeling framework. This method utilizes high-fidelity FEM simu-
lations as ground truth to learn the complex, non-linear dynamics of the soft
body. By abstracting the continuum physics into a virtual kinematic chain, the
framework bridges the gap between accurate offline physics and fast online
inference, enabling the integration of soft robots into standard rigid-body RL
environments.

The key deliverables of Part A include a validated nonlinear controller for
origami robots and a high-fidelity surrogate simulation environment capable
of training RL policies. These contributions demonstrate that by abstracting
continuum mechanics into computationally tractable forms, it is possible to
realize fast and physically faithful simulations that enable the learning of
robust control policies for deformable manipulators. With the problem of how
the robot acts and moves now addressed, the dissertation proceeds to Part B,
which tackles the complementary challenge of how the robot perceives the

world through the mechanics of the contact interface.
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Chapter 5.

Modeling the Deformable Contact
Interface

5.1. Motivation

The preceding part of this dissertation established methodologies for creating
fast and faithful simulation models of a compliant robot’s actuator-structure
dynamics. While this is a critical component for simulating how a robot acts,
a complete model of physical interaction must also account for the boundary
where the robot meets the world. The contact interface is as important as the
deformation of the body itself. As established in the introduction, there is an
increasing demand to synchronize rich force and contact data with the vast
kinematic and visual datasets used to train large-scale robot learning models.
For a robot to move beyond simple position-based tasks and master complex,
contact-rich manipulation, it must be able to reason about the relationship
between force and deformation.

Once again, the generation of this essential data requires simulation, and
the same trade-off between computational speed and physical fidelity becomes
the central challenge. The toolsets developed in Part A, which explored both
analytical and data-driven methods for modeling deformable systems, can be
adapted and applied to this new problem of analyzing the contact interface.

As reviewed in Chapter 2, a promising hardware-level solution is the
advent of vision-based tactile (ViTac) sensors. The increasing use of these
sensors in the robotics community, along with the development of tools for
analyzing and extracting features from their high-dimensional RGB output, is a
significant trend. Itis not a coincidence that the tip of a ViTac sensor is designed
with a deformable gel. This compliant interface is capable of capturing a

wealth of information about the contact event, such as distributed pressure and
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fine geometric details, that conventional rigid sensors and coarse simulation
models cannot provide. Therefore, the ViTac sensor serves as an excellent
physical testbed for developing and validating simulation methodologies for
the soft contact interface, which can in turn have a major impact on the future
of robot manipulation research.

The limitations of conventional force/torque sensors, which provide only
coarse, low-dimensional information about physical interaction, have driven
the development of advanced sensor technologies capable of capturing the
rich, distributed nature of contact. The most prominent among these are vision-
based tactile (ViTac) sensors, such as GelSight and the DIGIT sensor. These
sensors provide a powerful hardware solution to the data gap in contact me-
chanics. By embedding an internal camera to observe the deformation of a
soft, elastic surface, they output high-resolution, image-like data that visually
encodes a wealth of information about the contact event, including the precise
contact geometry, surface texture, and the distribution of forces across the con-
tact patch. The richness of this data has led to their increasing adoption in the
robot learning community, enabling the mastery of fine-grained manipulation
skills in advanced, data-driven architectures.

The success of these sensors has, in turn, created a strong and urgent
demand for simulation environments that can accurately reproduce their high-
fidelity outputs for scalable data augmentation and policy training. A variety
of rendering simulation approaches have been developed to meet this demand,
including methods like TACTO [61] and Taxim [64] . However, a critical
limitation persists in this domain. As noted in recent reviews, many of these
simulators prioritize visual realism over physical accuracy and fall short of
producing physically grounded data that jointly and accurately captures force
distribution, contact shape, and surface deformation from first principles.

To address this physical grounding deficit, the work detailed in Chapter 5
of this dissertation introduces a novel bidirectional data pipeline. This frame-
work uses a meticulously calibrated FEM model of the tactile sensor to create

a bridge between the physical and digital domains, providing a methodology
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to not only generate physically consistent synthetic data from simulation, but
also to add dense physical annotations to real-world images. Finally, Chapter
6 takes this a step further. It demonstrates how this high-fidelity data pipeline
can be used to create a true data-driven contact model: a Neural Physics
Engine (NPE). This learned model directly captures the sensor’s complex,
soft-body contact dynamics, providing a fast, modular, and robust framework
for generating the high-quality, physically grounded contact datasets required
to teach the next generation of robot learning models how to master physical

interaction.

5.2. Introduction

Robotic policy learning and the execution of complex tasks have been signifi-
cantly advanced by the availability of large-scale datasets [186—188]. Beyond
diverse state observations, rich force feedback from the end effector is recog-
nized as a crucial component for achieving precision and robustness in contact-
rich manipulation. This is especially true for platforms like humanoids, which
require physical interactions that are both safe and adaptive [9, 189].

In-hand manipulation tasks, which involve multiple simultaneous con-
tacts by a gripper, necessitate high-resolution and spatially dense tactile sens-
ing for the accurate capture of both contact forces and geometry [60, 68, 190].
The information provided by conventional proprioceptive sensors, such as
joint torque encoders, is often too coarse, failing to capture localized details
such as contact points, shapes, or forces [191,192].

The limitations inherent in proprioceptive sensing have spurred recent
progress in the development of ViTac sensors, which employ embedded cam-
eras to capture the deformations of an elastic surface [12, 193, 194]. Such
sensors exhibit superior capabilities for extracting physically meaningful con-
tact information—including contact location, surface geometry, and force dis-
tribution—by interpreting visual signals [195-197]. This capability enables
fine-grained control in manipulation tasks, such as object reorientation and
slip detection [68, 198].
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Performance in a variety of downstream tasks has been improved through
the use of ViTac sensors, including grasp outcome prediction, material recogni-
tion, force estimation, and contact-rich manipulation via end-to-end reinforce-
ment learning [199-203]. Such advances depend on access to large volumes
of high-quality tactile data, a requirement that motivates the development of
simulation environments capable of reproducing high-fidelity ViTac outputs
for scalable data augmentation and policy training [61, 197,200, 204].

This demand has been addressed by the development of various simulation-
based approaches, including methods for realistic tactile image generation,
physics-informed perception, and rendering within physics-based simulators [61,
64,66,68,197,205,206]. Although these methods have led to advancements in
tactile rendering and representation learning, the majority are unable to pro-
duce physically grounded tactile data that jointly captures force distribution,
contact shape, and surface deformation. Finite Element Methods (FEM) can
model these interactions with high fidelity, yet their computational expense of-
ten renders them impractical for real-time control or accelerated reinforcement
learning [207,208]. Furthermore, the focus of existing work is typically on
perception rather than generation, with only a few methods rendering realistic
RGB outputs that closely match actual sensor responses [61,64,209,210].

The present study introduces a simulation rendering framework, based
on an optimized FEM implementation, for the physically accurate and high-
resolution modeling of ViTac sensors. The simulator is designed to com-
pute contact-induced surface deformation and force distribution, thereby pro-
ducing large-scale datasets with physically grounded annotations. Simulated
responses are aligned with real sensor measurements through a calibration
procedure that covers various contact shapes and loading conditions. This cal-
ibrated model is then used to construct paired datasets by matching simulated
nodal outputs with real RGB images from mirrored indentation experiments.
The resulting datasets facilitate the training of two bidirectional networks. The
first is a perception model for estimating deformation and force from an RGB

input, while the second is a rendering model for synthesizing realistic tactile
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images from physical-state representations. Collectively, these networks allow
for the interpretable annotation of real sensor data and the physics-consistent
generation of RGB images from simulation, supporting both scalable data

augmentation and simulation-based learning.

5.3. Data Generation Pipeline

The proposed simulation and learning framework, illustrated in Figure 5.1,
establishes an integrated ecosystem that connects high-fidelity, FEM-based
simulation with a bidirectional mapping between real and simulated tactile
signals. At the core of this framework is a detailed physical model of the DIGIT
sensor [60], which was developed and calibrated within the SOFA simulation
environment [40]. This calibration process utilized a minimal set of real-world
indentation experiments to accurately characterize and replicate the complex
hyperelastic behavior of the sensor’s silicone gel tip. The resulting model
employs a fine-resolution tetrahedral mesh, specifically designed to capture
nodal displacements and contact forces with a spatial fidelity that matches the
physical device. This high-resolution representation is critical for resolving
the subtle, high-frequency surface deformations that constitute rich tactile
information.

A primary challenge with high-fidelity FEM is its computational expense,
which renders it impractical for large-scale data generation. As detailed in
Chapter 4, this challenge was addressed using similar MOR [41,44] methods
to reduce the mesh size of the gel tip of the ViTac sensor. The application
of MOR involves projecting the system’s dynamics onto a lower-dimensional
subspace that captures the dominant modes of deformation. This approach
achieves a significant acceleration in simulation speed without compromising
the underlying physical accuracy, making it feasible to generate extensive
datasets in a fraction of the time.

A meticulously controlled procedure was used to construct a paired
dataset by reproducing identical contact conditions in both the physical setup

and the accelerated simulation. This process yielded a rich collection of cor-
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responding data tuples, where each real-world RGB image (Ig) is directly
matched with its simulated physical annotations, including the 3D surface de-
formation field (U) and the corresponding force distribution (F). This paired
dataset serves as the foundation for training two complementary deep neural

networks:

1. A perception model, which performs an analysis task by inferring the
physically grounded states (U and F) from a single real RGB tactile

image (Ig).

2. A rendering model, which performs a synthesis task by generating a
realistic, high-fidelity RGB tactile image from a given set of simulated

physical contact states.

Together, these components create a powerful, real-time, bidirectional
translation engine between the physical (simulation) and visual (real-world)
tactile domains. This synergy enables two critical capabilities: the physics-
informed annotation of real sensor data for improved interpretability, and the
high-fidelity synthesis of realistic tactile images within accelerated simulation

environments for scalable, simulation-based policy learning.

5.4. High-Fidelity Tactile Simulation

5.4.1 Material Calibration and Mesh Preparation

The development of an accurate FEM simulation for the Vision-based Tactile
(ViTac) sensor necessitated the precise modeling of two key aspects: (i) the
intrinsic material properties of the deformable gel tip and (ii) its complex
deformation behavior under contact. The foundation of this process was a
rigorous material calibration procedure. Force-displacement measurements
were collected under quasi-static loading conditions using a universal testing
machine. This quasi-static approach was crucial for isolating the hyperelastic
properties of the silicone gel from time-dependent viscoelastic effects. The

resulting empirical data were then used to fit the parameters of a suitable
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Figure 5.1: Structure of the bidirectional framework linking real and simulated
outputs from vision-based tactile sensors. A mirrored setup was used to collect
paired data between physical indentation and simulation (gray region).

hyperelastic material model such as Mooney-Rivlin or Neo-Hookean, which
govern the relationship between stress and strain within the FEM simulation.

With the material properties defined, the simulation geometry was pre-
pared. The 3D CAD models of the sensor body and the indenter were dis-
cretized into high-resolution tetrahedral meshes suitable for FEM analysis.
Special attention was given to the mesh quality at the contact interface, as
this region experiences high stress and strain gradients. The initial contact
surface region of the sensor mesh was locally refined to a higher density, a
step that improves the numerical stability of the contact solver and reduces
surface noise in the resulting deformation field. Subsequently, iterative Lapla-
cian smoothing [211] was applied to the mesh vertices. This preprocessing
step improves the quality and aspect ratio of the tetrahedral elements, enhanc-

ing the overall robustness of the simulation by preventing issues like element
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inversion during large deformations. The final, preprocessed mesh was then

used as the geometric basis for the FEM simulation.

5.4.2 Real-Time Simulation via Model Order Reduction

While high-fidelity FEM provides physical accuracy, its computational cost,
stemming from a system with tens of thousands of DOFs, is prohibitive for real-
time applications or large-scale data generation. To address this bottleneck,
MOR was applied using the Proper Orthogonal Decomposition method [44].
Let ii,(z) € R¥*! denote the full-order normal displacement vector at time ¢,
where N is the total number of FEM nodes. The static equilibrium is governed
by:

K(@i,) = f, (5.1)
where K is the nonlinear stiffness operator and f is the external force vector.

The MOR process begins by collecting a sequence of representative deforma-

tion "snapshots" from a full-order simulation into a snapshot matrix:
U= [ideg,... id.7-1] € RV, (5.2)

Using singular value decomposition (SVD), this matrix is factorized to ex-
tract a set of orthogonal basis vectors that represent the dominant modes of
deformation:

U=®xv’. (5.3)

By retaining only the top-r most significant basis vectors (where r << N), a
reduced subspace ® € RV is formed. The full displacement field can then

be approximated as a linear combination of these basis vectors:
i, ~ ®g, (5.4)

where g € R” is the reduced coordinate vector. Substituting this approximation

into the original system and projecting onto the reduced basis yields the
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reduced-order system:
O KPG=d"f. (5.5)

This reduced system, which solves for the small vector ¢ instead of the large
vector i, preserves the dominant physical behavior while reducing the compu-

tational cost by several orders of magnitude, thus enabling real-time execution.

5.4.3 Integrated Simulation Scene in SOFA

As shown in Figure 5.2, these components were integrated into a custom
simulation scene within the SOFA framework. The scene was constructed to
meticulously reproduce the contact-induced deformation of the ViTac sensor
using the reduced FEM model (M¥)). The sensor and indenter were repre-
sented as separate tetrahedral meshes, with the sensor’s contact region fea-
turing the refined mesh for enhanced resolution. During each simulation step,
the indenter follows a predefined perpendicular trajectory toward the sensor.
Collision detection algorithms identify intersections between the two bodies,
and a contact solver computes the resulting interaction forces, accounting for
frictional effects. These forces then drive the deformation of the reduced-
order model. The primary output is the nodal displacement field (U), a rich,
high-dimensional representation of the sensor’s physical state. This field was
subsequently processed to extract key physical annotations—such as contact
location, contact patch area (A), and force distribution (F(U))—which serve
as the ground truth data for calibrating the system and training the perception

and rendering networks.

5.5. Calibration Metrics

The calibration process is fundamental to bridging the gap between the simu-
lated model and its real-world counterpart, effectively creating a digital twin
of the sensor. This was accomplished by reproducing identical contact condi-
tions—such as indenter shape, depth, and orientation—across both the physical

DIGIT sensor and the FEM simulation. This parallel setup enables a direct and
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Figure 5.2: Overview of the FEM model calibration process and evaluation
metrics. Simulation in SOFA replicates real-world contact to generate surface
deformation (U) and corresponding force distribution () for model calibra-
tion. From the simulated nodal displacement (U), the contact location (p),
contact patch (A), and force map (F) are extracted and compared with the real
sensor measurements.

quantitative comparison of their geometric and physical responses, ensuring
that the simulation is a faithful representation of reality. The following metrics

were used to quantify the fidelity of the calibration.
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5.5.1 Nodal Position Error

The geometric accuracy of the simulation was first evaluated by quantifying
the nodal position error. This metric represents the mean Euclidean distance
between the 3D coordinates of surface points measured on the physical sensor
(typically via Digital Image Correlation) and the corresponding nodal positions
predicted by the FEM simulation under identical indentation conditions. The
error is reported as the RMSE, which provides a single aggregate measure
of the simulation’s ability to replicate the ground-truth surface deformation

across the entire contact region.

5.5.2 Contact Patch Geometry

Beyond the 3D surface geometry, the fidelity of the 2D contact footprint was
assessed using several metrics. The primary metric, Intersection over Union
(IoU), was used to quantify the spatial overlap between the real and simulated
contact patches, as depicted in Figure 5.2. The ground-truth contact mask was
extracted from the sensor’s RGB image (/g) via background subtraction and
image thresholding, while the simulated mask was generated by applying a
threshold to the vertical displacement field (6U,) of the surface nodes. To
provide a more granular analysis of any misalignment, the contact centroid
error (Euclidean distance between mask centers) and the rotation error (angular

difference between their principal axes) were also computed.

5.5.3 Force-Depth Correspondence

The physical realism of the simulation was validated by evaluating the force-
depth correspondence. This metric quantifies the agreement between the force-
displacement curves obtained from physical indentation trials and those gen-
erated by the simulation, ensuring the model’s mechanical response matches
reality. The total simulated contact force in the vertical (z) direction was com-
puted by integrating the stress over the contact area, derived from the calibrated

Neo-Hookean material model. The strain energy density function, W, defines
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the potential energy stored in the material as a function of its deformation:
W= %(1‘1 ~3)+ g(J — 12, (5.6)

where u and « are the calibrated shear and bulk moduli derived from Young’s
modulus E and Poisson’s ratio v, and 7; and J are strain invariants. From the

strain energy, the Cauchy stress tensor o (U) is computed:
o (U) = %(E—i) +x(J = DI, (5.7)

where B is the left Cauchy-Green deformation tensor. Finally, the discrete
force on each node i, f, is calculated by projecting the stress onto the nodal
surface area:

) = [o) -] A, (5.8)

where A; is the lumped surface area of node i and 7; is its outward surface
normal. The total simulated force, obtained by summing f* over all nodes
within the contact patch, was compared against the force measured by the
universal testing machine. The final reported metric is the RMSE between

these two force profiles across the full range of indentation depths.

5.6. Bidirectional Tactile Perception and Rendering
Networks

This work introduces two complementary networks that form a bidirectional

bridge between visual tactile imagery and their underlying physical states. The

first, a perception network, infers physical deformation from an RGB image.

The second, a rendering network, synthesizes a realistic RGB image from a

physical deformation field.

5.6.1 Perception Network: From Visual to Physical State

The perception network, shown in Figure. 5.3, is designed to solve the inverse

problem: estimating a dense physical displacement field from a single RGB
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Figure 5.3: Perception model ( f3): given an input RGB image (/r), the network
predicts a nodal deformation field (), consisting of 3D displacement at each
node. The output nodal deformation can be projected to form a spatial force
map F using the sensor model.

tactile observation. This capability is essential for robotic applications that

require a spatial understanding of contact surfaces from visual data.

Preprocessing and Data Handling As the training dataset was collected
from multiple DIGIT sensors, a preprocessing step is applied to standardize the
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input. A sensor-specific background image (12) is subtracted from each tactile
frame (/) to produce a delta image, AI € R¥>*?40%320 This process removes
static appearance variations and isolates the changes caused by contact. The
target for this network, the ground-truth displacement field U,, is obtained by
rasterizing the nodal outputs from the FEM simulation onto the image grid

using calibrated sensor bounds.

Network Architecture and Training The network employs a compact U-
Net encoder-decoder architecture. The design features a symmetric structure
with three encoding levels that process an increasing number of channels
(32, 64, 128), each utilizing batch normalization and ReLLU activations. Cor-
responding decoder levels use skip connections to preserve fine-grained spatial

details from the encoder. The forward pass can be described as:

E| = ReLU(BN(Convs_,3,(1))) (5.9)
E> = ReLU(BN(Convsy—64(Pool(E})))) (5.10)
E3 = ReLU(BN(Conves_,128(Pool(E3)))) (5.11)
D3 = ReLU(BN(Convg—64(Concat[Up(E3), E>]))) (5.12)
D, = ReLU(BN(Convgg—,32(Concat[Up(D3), E1]))) (5.13)
D = Convsy_,3(D>) (5.14)

where Concat[-] denotes channel concatenation and Up(-) represents trans-
posed convolution. The network’s output is a three-channel physical field
F = [ps Dy U.], where p, and py are normalized coordinates providing
auxiliary structural context.

The training process focuses specifically on the out-of-plane displacement

channel (U) using an MSE loss function:

N
1 N
Laip = 5 (Ui = Uz (5.15)
i=1
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The training pipeline incorporates global normalization of the displacement
data based on dataset statistics, with dz,,;, = —8.0x 107 and dz,pex = —3.0 X

107> meters, ensuring consistent training dynamics.

Evaluation Metrics The performance of the perception network is quanti-
fied using metrics that assess the geometric accuracy of the predicted contact

region: Contact IoU, Contact Centroid Error, and Contact Rotation Error.

5.6.2 Rendering Network: From Physical to Visual State

The rendering network, depicted in Figure 5.4, addresses the forward problem:
synthesizing a realistic RGB delta image AT that visually corresponds to a
given physical contact state. This enables the creation of large-scale, physically

grounded synthetic datasets for training downstream policies.

Input Preprocessing with Gaussian Splatting The network processes a
multi-channel input derived from the sparse nodal data of the FEM simulation.
A sophisticated data preprocessing pipeline converts this sparse data into a
dense spatial representation. The Gaussian splatting technique [212] is used

to transform sparse nodal displacements (x;, y;, dz;) into a dense field using

the kernel:
X2+ yz)

K(x,y) = exp (— 02
px

(5.16)

where the Gaussian standard deviation is set to 0, = 1.5 pixels. The dis-

placement values are normalized to the range [—1, 1]:

I mm. (5.17)

AZnorm = CllP ( ,—1, 1) ,  with dzscale

Zscale

The final input tensor combines the dense displacement field, coordinate fea-

tures (x, y), and Fourier positional encodings with four frequency components
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Figure 5.4: Rendering model (f;): given a physical state input Us € R¥*3, the
network reconstructs a synthetic RGB image Al that mimics the real sensor
image.

to provide the network with multi-scale spatial information:

sin(2xk - for even indices
PE(p, k) = ( Pnorm) . ke{1,2,3,4}. (5.18)
cos(2nk - pporm) for odd indices
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Network Architecture and Training The architecture is a lightweight U-
Net with two encoder stages, a bottleneck, and a symmetric decoder. It uti-
lizes Group Normalization and Gaussian Error Linear Unit (GELU) activa-
tions [213] for improved training stability. The final layer employs a tanh
activation to produce the RGB delta image in the range [—1, 1].

Training is performed using a sophisticated masked L.1 loss function that
intelligently weighs different regions of the image. The total loss is a sum of

losses for the contact, background, and neutral regions:

L = Leontact +0.1 - ‘ng +0.02 - Lyeutral» (5.19)

where each component is a masked L1 loss designed to focus the model on
physically meaningful contact regions while appropriately penalizing errors

in the background:

2 Mij-lij—1ijlh

Leontact = Z,‘,j Mi,j P (5.20)
o (L=M; ) | =1
ng _ Z ,J( l,]) ” i,] l,]”l’ (5.21)
2ij(1—Mj) +e€
Lneutral = mean(l(l - Mi,j) : ft,jl) (5~22)

Here, the contact mask M is derived from the simulated vertical displacement
oU;.

Evaluation Metrics The quality of the rendered images is evaluated with
three standard metrics:

* L1 Loss: The mean absolute pixel difference between the predicted and

ground-truth images.

» Peak Signal-to-Noise Ratio (PSNR): A measure of reconstruction qual-

MAX )

ity based on pixel-wise error, calculated as PSNR = 201og, (M—SE .

e Structural Similarity Index Measure (SSIM): A perception-based metric
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that compares luminance, contrast, and structural similarity.
The predicted delta image ATg can be converted to the final tactile image Iz
by adding back the sensor-specific background 12.
5.6.3 Hyperparameter Summary

A summary of the key hyperparameters for both networks is provided in
Table 5.1.

Component Perception Network (fy) Rendering Network ()

Input RGB Delta Image (AIRr) Physical State (Us) with Posi-
tional Encodings

Output Physical State (Us) RGB Delta Image (Als)

Architecture UNet (3-level) UNet (2-level)

Activations / Norm ReLU + BatchNorm GELU + GroupNorm

Loss Function MSE on displacement channel =~ Masked and Weighted L1 Loss

(dz)
Optimizer Adam (1 x 1075) Adam (1 x 1079)

Table 5.1: Hyperparameters of the two bidirectional networks.

5.7. Experimental Methodology
5.7.1 Material Calibration Procedure

The physical basis for the simulation is a hyperelastic material model whose pa-
rameters must be precisely identified through empirical characterization. This
calibration was performed by collecting high-resolution force-displacement
data from the physical DIGIT sensor. As illustrated in Figure 5.5, a planar
stage was used to ensure precise alignment between the indenter tip and the
specific region of interest (ROI) on the sensor surface. This alignment is crit-
ical for eliminating off-axis moments and shear forces, thereby isolating the
pure compressive response of the material.

The indentation tests were conducted using a universal testing machine
(34SC, Instron), which provides high precision with a force resolution of
10 mN and a displacement accuracy of 20 um. Measurements were taken

at 100 uniformly distributed locations across the sensor’s ROI to construct
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Figure 5.5: Experimental setup using a universal testing machine and ten
different indenter tips to press against the vision-based tactile sensor. The tips
represent a variety of geometric shapes.

a comprehensive spatial map of the material response and account for any
minor non-uniformities in the gel. At each location, a complete indentation-
retraction cycle was performed in a quasi-static mode, using a constant, slow
indentation speed of 0.01 mm/s up to a maximum depth of 1 mm. Preliminary
experiments confirmed that indentation speeds exceeding 0.5 mm/s introduced
rate-dependent viscoelastic effects. By operating well below this threshold, the
collected data predominantly reflects the hyperelastic properties of the silicone,

which is consistent with the constitutive model used in the FEM simulation.

5.7.2 Paired Dataset Acquisition

Following calibration, a large and diverse dataset was acquired for training the
bidirectional perception and rendering networks. The objective was to create
a comprehensive dataset that spans a wide distribution of contact geometries,
pressures, and sensor-specific variations, which is essential for training robust
and generalizable models.

The data collection involved real-world indentation tests using 10 different

128



ROI Types  Rotation Count
20 e ey R e e
i | @ donut
. : | ® dots 0 10000
15 s | ® edge
_— line
= ® . E — - /4 1250
é 10 - .:‘. § multi
= gTe B ot /2 1250
Py pyramid
5 H round
° sphere 3n/4 1250
® square
0 : | @ texture 1250
-5 0 5 n
X [mm]

Figure 5.6: Contact ROI on the sensor surface, along with the number of rotated
indenter configurations used for data collection. For asymmetric indenters,
rotations were also applied to collect various contact patch.

indenter geometries, as shown in Figure 5.6. These shapes were selected to
represent a variety of geometric primitives encountered in manipulation tasks,
ranging from sharp points and edges to smooth curves and complex textures.
For each indenter, a step-wise indentation was performed in 100 increments
of 10 um each, up to a maximum depth of 1 mm. The maximum depth was
carefully chosen to ensure that the resulting contact force remained below the
sensor’s safe operational limit of 15 N.

To maximize dataset diversity and prevent the models from overfitting, a
systematic variation strategy was employed. Asymmetric indenters (e.g., maze,
pyramid) were physically rotated between trials to generate a rich variety of
contact patterns and pressure distributions from a single object. For symmetric
indenters (e.g., point, sphere), the contact position on the sensor was varied
instead, as depicted in Figure 5.6. Furthermore, to ensure the trained models are
robust to manufacturing tolerances, the entire set of experiments was repeated
using four different physical DIGIT sensors. This practice forces the models
to learn the general principles of contact mechanics rather than memorizing
the idiosyncratic response of a single sensor.

In total, 15,000 real contact images were acquired. For each real-world
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measurement, a corresponding FEM simulation was executed under identical
conditions (indenter geometry, position, orientation, and depth). This process
yielded a perfectly paired dataset, where each real RGB image is matched
with a high-fidelity physical annotation from the simulation, containing de-
tailed nodal deformation and contact pressure information. This one-to-one
correspondence is the key enabler for the supervised training of the bidi-
rectional networks. A total of 15% of this dataset was strictly held out as a
validation set, used exclusively for evaluating the final inference performance

of the trained models on unseen data.

5.8. Result

5.8.1 Calibration Precision

The fidelity of the calibrated Finite Element Method (FEM) simulation was
quantitatively validated by reproducing identical indentation sequences in both
the physical and simulated setups. This validation ensures that the simulation
serves as a high-fidelity digital twin of the physical DIGIT sensor. The key
calibration results, summarized in Table 5.2, quantify the correspondence be-
tween the two domains in terms of both physical force response and geometric
deformation.

The global force error, reported as the Root Mean Square Error (RMSE)
between the simulated and measured force-displacement curves, averaged
0.20 N across all indenters, with a maximum deviation not exceeding 0.30 N.
This low error, relative to the sensor’s operational force range, indicates a
strong correspondence in the modeled material behavior. The errors were
observed to be smallest in the central region of the sensor and increased
slightly toward the edges, a phenomenon attributed to the complex boundary
conditions and higher stress concentrations at the perimeter of the convex
silicone gel tip.

The geometric accuracy was assessed via the nodal position RMSE,

computed as the average Euclidean distance between simulated and measured
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nodal coordinates, resulting in a low error of 0.192 mm. This confirms that
the simulation accurately captures the three-dimensional shape of the surface
deformation. All reported values are averaged over ten distinct indenter ge-
ometries, with statistics calculated from a set of 100 uniformly distributed
indentation points per indenter. The SOFA-based reduced-order FEM simula-
tion achieves an execution speed of approximately 30 frames per second (FPS)
on a 32-core, 64-thread CPU, demonstrating its suitability for generating large

datasets efficiently.

Domain Metric Value

Force RMSE [N]] 0.20 = 0.030
Nodal position [mm]| 0.192 + 0.017

FEM Calibration

Contact IoUT 0.85 + 0.055
Contact centroid [mm]| 0.458 + 0.078

Network Perception Contact rotation [rad]|  0.047 £ 0.014

Surface force [N]] 0.11 +£0.037
L1] 13.59 + 1.03
Rendering Quality ~ SSIM7T 0.971 £ 0.02
PSNRT 39.13 + 1.81

Table 5.2: Summary of quantitative results for calibration, perception, and
rendering tasks. The arrows (T) indicate that higher values are better, while ()
indicates that lower values are better.

5.8.2 Perception Network Validation

The perception network, tasked with inferring physical contact states from raw
visual data, was evaluated on the held-out validation dataset. The evaluation
confirmed its ability to reliably recover both the spatial structure and the
physical response of real-world contacts. The similarity of the contact shape,
quantified by the Intersection over Union (IoU) between real and predicted
contact patches, yielded a high mean value of 0.85 + 0.05. The positional
accuracy of the contact was also high, with a centroid error of only 0.458 +
0.078 mm and a minimal rotation error of 0.047 + 0.01 rad.

A key capability of this framework is the estimation of physical forces
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Figure 5.7: Visual examples of perception network. The network predicted
deformation field U and corresponding force distribution for various indenters.
These positions and rotations were not included data in the training.

from visual data. Although the network does not directly predict force, the
predicted nodal displacements can be fed into the calibrated physical model
(Eq. 5.8) to compute the corresponding contact forces. This hybrid approach,
combining deep learning for perception with the underlying physical model,
yielded a surface force RMSE of just 0.11 + 0.03 N.

Qualitative results in Figure 5.7 further illustrate these capabilities, show-
ing that the network accurately reconstructs detailed nodal displacement fields
and force distributions for previously unseen contact events. The model not
only captures the global contact geometry but also reproduces localized pres-
sure patterns. With an inference speed exceeding 1,000 images per second on
an RTX 5090 GPU, the perception model is well-suited for both rapid offline
annotation of large datasets and deployment in real-time tactile perception

pipelines.
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5.8.3 Rendering Network Validation

The rendering network, designed to synthesize photorealistic tactile images
from physical simulation data, was evaluated on the paired FEM-RGB val-
idation set. Given multi-channel physical inputs from the FEM simulation
(deformation fields and positional encodings), the network generated delta
RGB images (ATg) representing the contact imprint.

Quantitative evaluation using standard image similarity metrics con-
firmed the high fidelity of the generated images. The mean absolute error
(L1) was 13.59 + 1.03 on a 0-255 pixel intensity scale, indicating low over-
all pixel-wise error. The Structural Similarity Index Measure (SSIM) reached
0.971 + 0.02, a value very close to unity that signifies an extremely high
similarity in luminance, contrast, and structural features. Furthermore, the
Peak Signal-to-Noise Ratio (PSNR) was 39.13 + 1.81 dB, reflecting a low
reconstruction error and high perceptual quality.

Representative examples in Figure 5.8 show that the rendered images
are almost indistinguishable from their ground-truth counterparts, accurately
reproducing both global contact shapes and fine, local texture details. These
results demonstrate that the rendering network can generate high-fidelity syn-
thetic tactile images from physically grounded FEM outputs, providing a
powerful tool for realistic visual data augmentation. The network achieves an
inference speed of approximately 220 images per second on the same hard-

ware, supporting the fast, on-the-fly generation of training data.

5.8.4 Generalization to Unseen Data

The practical utility of the bidirectional networks was further assessed in
scenarios that tested their generalization capabilities beyond the training dis-

tribution, as shown in Figure 5.9.

Perception network on external dataset. The perception model’s robust-
ness was tested on samples from the YCB object set [214] provided via the

TACTO simulation framework [61]. This represented a significant domain
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Figure 5.8: Visual examples of rendering results showing synthetic tactile
images /g compared with the real image /g generated from deformation inputs
Us for various indenter geometries.

Figure 5.9: Perception network inference of surface deformation using RGB
images collected from real-world objects not seen during training.

134



/)F’/a

07

/,,
?/

Figure 5.10: Rendering results from text-based indentation experiments, show-
ing high-fidelity RGB outputs for various indenter shapes.

shift, as the lighting, shading, and object textures differed from the training
data, and no background image was available for subtraction. As shown in
Figure 5.9, despite these variations, the network successfully segmented the
contact region and reconstructed a plausible height map of the nodal de-
formation, demonstrating that it learned the underlying physical relationship
between visual features and 3D geometry rather than overfitting to the training

conditions.

Rendering network on unseen indenters. The rendering model was tasked
with generating images for complex indenter geometries not present in the
training set. Nodal deformation fields for these novel shapes were produced
purely through FEM simulation, without any corresponding real-world im-
ages. As presented in Figure 5.10, the network synthesized realistic delta
RGB images for these new contact shapes, accurately capturing their global
geometry. While minor artifacts were visible in some fine-scale details, the
overall shapes were rendered consistently, confirming the network’s potential

for generating tactile imagery for entirely virtual objects and scenarios.
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Figure 5.11: Rendering based on high-resolution contact data from a physics-
based simulator. Deployment on a robot arm equipped with dual DIGIT sensors
in environment. The rendering network synthesizes realistic RGB outputs
during dynamic grasping

Rendering sensor in Physics-based simulation. Asillustrated in Figure 5.11,
the rendering network can be seamlessly integrated into standard physics-based
robotic simulation pipelines. In such a setup, contact information from a sim-
ulated robot interaction is projected onto the sensor’s nodal grid. This physical
state is then passed through the rendering network to generate a realistic DIGIT
sensor image in real time. This capability enables the scalable augmentation
of training data for contact-rich manipulation tasks, such as in-hand control or
fine assembly, by replacing simplistic contact signals with high-fidelity visual
feedback. By preserving the physical grounding of contact, the generated im-
ages can be used to train perception and control policies that are more likely
to succeed in the real world, thereby reducing the reliance on labor-intensive

physical data collection.
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5.9. Discussion

This work presented a bidirectional framework that creates a symbiotic link
between high-fidelity finite element simulation and real-world ViTac sen-
sor measurements. The core of the framework consists of two UNet-based
networks: a perception model that regresses a dense, three-dimensional defor-
mation field (U) from a high-resolution RGB image, and a rendering model
that synthesizes photorealistic tactile images from simulated physical states.
By training these complementary models on a single, carefully paired dataset,
a closed simulation-reality loop is established. This enables two powerful
capabilities: the large-scale generation of physically grounded synthetic data
for training, and the automated physical annotation of unlabeled real-world

images, thereby overcoming the data bottleneck in tactile robotics.

Comparison to Prior Work. The contributions of this framework are best
understood in the context of existing literature. In the domain of tactile per-
ception, the objective of this work—dense deformation regression—is more
fundamental than that of related methods. For instance, Sim2Surf [69] focuses
on surface classification, while GenForce [201] targets the estimation of a
single, three-axis force vector. The most similar objective is found in Sim-
TacLS [206], which reconstructs skin shape; however, the present framework
places a greater emphasis on a rigorously calibrated sim-to-real pipeline to
ensure physical accuracy.

On the simulation front, many existing platforms like TACTO [61] and
TacSL [65] prioritize scalability by using simplified contact models, such as
rigid-body or penalty-based methods. While fast, these approaches do not
explicitly resolve the complex, nonlinear deformation of the elastomer. In
contrast, the FEM-based approach adopted here, similar in spirit to DiffTac-
tile [66], is designed to capture the calibrated hyperelastic behavior derived

directly from real sensor data, prioritizing physical fidelity.
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Physically Grounded Learning. A key aspect of this work is the meticulous
calibration of the FEM model using force-displacement measurements from a
real sensor. This initial step significantly reduces the sim-to-real gap *before*
any neural network training begins. By ensuring the paired training states
are both visually and physically representative of reality, the networks are
trained with physically grounded supervision. This allows the models to learn
amore direct and accurate mapping between well-aligned domains, rather than
simultaneously learning the mapping and compensating for a large, unknown

domain shift.

Quantitative Performance. The perception network’s ability to infer phys-
ical states from images was validated quantitatively. From the predicted de-
formation field Us, contact geometry and forces were derived and evaluated
against the calibrated ground truth. The results demonstrate sub-millimeter
precision in localizing contact, with a centroid error of 0.458 mm and a rota-
tion error of 0.047 rad. Furthermore, the framework achieves high-fidelity force
estimation, with a force RMSE of only 0.11 N. A comprehensive documen-
tation of the mean errors, confidence intervals, coordinate frames, alignment
procedures, and sample counts is provided in the project’s Github repository.
Checkpoints and evaluation scripts are also supplied to ensure exact repro-
ducibility of these results.

The rendering network, which translates FEM states into RGB images,
achieves excellent photorealistic quality, with an SSIM of 0.971 and a PSNR
of 39.13 dB on a held-out test set. The network is also highly efficient, with
an inference speed of 220 FPS on an RTX 5090 GPU (batch size 8), enabling
on-the-fly data generation. Direct performance comparisons with prior work
are challenging due to differences in sensors, datasets, and metrics. There-
fore, claims of superiority are limited to shared evaluations under identical
conditions. For methods like Taxim [64], where standard metrics were un-
available for the present dataset, controlled reimplementations were used for

fair comparison.
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Reproducibility and Future Directions. To facilitate further research and
ensure reproducibility, all project materials are publicly available. This in-
cludes data acquisition scripts, FEM setup and calibration utilities, trained net-
work checkpoints, the complete paired dataset, and evaluation code, all acces-
sible at https://github.com/ndolphin-github/DIGIT_simulation.
git.

The current framework, while robust, has several avenues for future work.
The FEM model assumes quasistatic contact and a fixed hyperelastic material
law; incorporating rate-dependent effects (viscoelasticity) would allow for the
modeling of more dynamic interactions. Other important directions include
developing methods for sensor transfer with minimal recalibration to adapt
the models to new hardware, and exploring model compression techniques for

deployment on resource-constrained edge devices.
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Chapter 6.

A Geometry-Aware Neural Physics Engine
for Dense Deformation Prediction

6.1. Motivation

The work in the preceding Chapter 5 established a data generation pipeline and
the pretrained networks interpret and render. The methodology for generating
high-fidelity, physically-grounded datasets that are paired with raw vision tac-
tile RGB images was proposed. This addressed the data scarcity problems and
the annotation bottleneck for the tasks where vision-based tactile sensors were
utilized [61,62,67,215]. This last research chapter represents a further expan-
sion of that work, showcasing its direct application in creating a functional,
data-driven simulation component. The goal is to present a generalizable
method for integrating a soft, deformable gel-tip sensor into an accelerated
physics engine with the extracted features from the high dimensional vision
tactile image data.

This research is driven by the critical need for fast and physically realistic
tactile simulation to bridge the sim-to-real gap for contact-rich robot learning.
As has been established throughout this dissertation, a persistent trade-off
exists between the fidelity of a simulation and its computational speed. This
chapter aims to solve that trade-off for the specific, but critical, domain of
tactile sensing. As a case study, this work continues to focus on the widely
used DIGIT sensor, a representative example of a vision-based tactile sensor
with a deformable interface. The ultimate goal of the work presented in this
chapter is to answer a key question. How can we construct a simulated vision-
based tactile sensor that can be rendered within a standard, fast physics-
based simulation environment, while retaining the high physical fidelity of the

underlying deformable body dynamics?
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6.2. Introduction

The advancement of general-purpose robotics is increasingly tied to the devel-
opment of large-scale, data-driven policies, often referred to as Robot Founda-
tion Models [186,216-218]. A primary bottleneck hindering the progress of
these models is the lack of large-scale, multi-modal datasets, especially those
containing the high-quality contact and force data that are essential for learning
robust physical interaction. While the field has made significant strides using
kinematic and visual data, a fundamental gap remains in providing learning
algorithms with the rich, physically grounded information that governs the
nuances of contact mechanics.

The vision-based tactile (ViTac) sensors have emerged as a promising
hardware solution for capturing this intricate contact data [12, 60, 196]. By
observing the deformation of a soft, compliant surface, these sensors provide
high-resolution, image-like data that encodes a wealth of information about
the contact event. However, the very success of these sensors highlights a
subsequent challenge, which is the need for a scalable method to generate
synthetic data for RL and other data-hungry learning paradigms. The direct
collection of massive datasets from physical ViTac sensors remains a slow and
resource-intensive process.

This necessitates a turn to simulation, which re-introduces the fundamen-
tal trade-off between computational speed and physical fidelity. On one hand,
slow, high-fidelity FEM simulations can accurately model the deformable
physics of the sensor tip but are computationally intractable for large-scale
data generation. On the other hand, fast, rigid-body simulators are physically
inadequate, as they cannot represent the crucial deformation mechanics that
are central to the sensor’s operation.

To bridge this critical gap, this chapter introduces the concept of a Neural
Physics Engine (NPE) for tactile simulation. An NPE is a data-driven model
that directly learns the complex physics of a specific phenomenon from high-
fidelity data, serving as a computationally efficient and physically faithful

replacement for a traditional physics solver. This research develops a geometry-
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aware NPE for a ViTac sensor that is both fast enough for large-scale data
generation and accurate enough for meaningful sim-to-real transfer.

The primary contribution of this work is the development and valida-
tion of this Neural Physics Engine, which is a novel Graph Neural Network
(GNN) [219,220] based proxy model trained on calibrated FEM data. The re-
sulting NPE accurately predicts full-field deformations under contact, and its
rendered output faithfully reproduces real-world sensor data from a dynamic
trajectory. Its efficacy is demonstrated by showing its utility in enabling down-
stream perception tasks. This NPE provides a scalable solution for generating
high-fidelity tactile data, thereby advancing the development of contact-aware
robotic intelligence. Minor contributions that support this central work include
the creation of a general trained FEM contact network that can estimate defor-
mation without requiring a live simulation, a real-to-sim calibration method-
ology validated through a peg-in-hole task, and the final packaging of the NPE
as a modularized simulated sensor that can be readily integrated into standard

physics-based simulation environments.

6.3. Related Works

While a broad overview of the field was presented in Chapter 2, this section
provides a more detailed and comparative analysis of the specific literature
that contextualizes the contributions of this chapter. The following review
examines the current state of the art in tactile sensor simulation and learned
physics, highlighting the specific limitations of current contact and deforma-
tion simulations developed.

A prominent line of research in tactile simulation has focused on fast,
rendering-based approaches. Variety of the simulators [61, 66,221] have
made significant strides by providing open-source tools that can generate
high-resolution visual outputs for tactile sensors within standard physics sim-
ulations. These frameworks prioritize rendering speed and ease of integration,
which have been crucial for their adoption in the robot learning community.

However, their primary limitation is a lack of deep physical grounding. The
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contact mechanics in these simulators are often based on simplified approxi-
mations [61,221] or penalty methods inherited from the underlying rigid-body
engine [29-31], which do not explicitly resolve the nonlinear elastomer de-
formation that is central to the operation of the gel-sight-like sensors. This
can lead to a physical grounding deficit, where the generated images are vi-
sually plausible but may not accurately reflect the true underlying force and
deformation fields.

In direct contrast, another research thrust has focused on high-fidelity
physics simulators. Some of the differentiable simulators [43,64,66] utilize the
Finite Element Method (FEM) to accurately model the hyperelastic behavior
of the sensor’s soft components. This approach provides unparalleled physical
accuracy, capturing the detailed stress-strain relationships that are missed
by simpler models. The primary drawback of these methods, however, is
their computational cost. The need to solve complex systems of equations at
each time step makes them fundamentally unsuitable for the real-time, high-
throughput data generation required for most modern reinforcement learning
applications. They are faithful, but not fast.

The methodology presented in this chapter, namely learned physics and
surrogate modeling, offers a hybrid approach that balances these compet-
ing demands. This work is distinct from research that uses geometry-aware
GNN [219] to learn general physical laws from scratch. Instead of attempting
to learn the physics of an entire scene, this research focuses on creating a highly
specialized model for a single, critical subsystem: the soft-body contact of the
tactile sensor. By training a geometry-aware GNN on high-fidelity, calibrated
FEM nodal data, the resulting NPE serves as a fast and accurate proxy for a
slow analytical solver.

Finally, this work could contribute to an alternative to the rigid-body
contact solvers. Significant progress has been made in developing fast and
stable online solvers for rigid-body contact, including iterative methods like
Projected Gauss-Seidel [222], operator-splitting methods like ADMM [223],

and Newton-based methods [224]. These solvers are essential for the efficient
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simulation of articulated robotic systems. The NPE developed in this chapter
does not seek to replace these general-purpose solvers. Instead, it addresses
the complementary problem of soft-body deformation at the contact interface,
a domain that rigid-body solvers are not designed to handle. The NPE is
designed to be a modular component that can be integrated into these larger
simulation frameworks to provide high-fidelity contact resolution where it is
most needed.

In summary, the existing landscape of tactile simulation presents a clear
trade-off between the speed of rendering-based approaches and the fidelity of
physics-based ones. This chapter introduces an NPE that is designed to occupy
the ideal space in this spectrum. It is physically grounded, having been trained
on data from a meticulously calibrated FEM model. It is fast enough for large-
scale data generation, running orders of magnitude faster than the high-fidelity
simulation it replaces. It utilizes an efficient and generalizable structure, a
geometry-aware GNN, to accurately predict the full-field deformation of the
sensor. This provides a scalable and robust solution for generating the high-

quality data required for advancing contact-aware robotic intelligence.

6.4. Framework Overview

The proposed framework enables the training of contact-rich manipulation
policies within a fast simulation environment and facilitates zero-shot transfer
to the real world. The core innovation lies in establishing a common physical
representation—the full-field nodal deformation U—which serves as a unified
interface between the visual domain of the real world and the physics domain
of the simulation. As illustrated in Figure 6.1, the overall pipeline consists of

three interconnected modules described below.

6.4.1 Offline Perception and Rendering Learning

To ground the simulation in reality, a bi-directional mapping is first learned
between raw tactile images and their underlying physical states. The Perception

Network ( fy), from the previous Chapter 5, acts as the sensory interface in the
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Figure 6.1: The proposed Sim-to-Real framework. (Left) The Perception Net-
work fy and Rendering Network f," are trained offline using real-world tactile
images. (Right) The trained NPE (NPE}) predicts high-fidelity nodal defor-
mations Ug from sparse simulation contacts. A shared Tactile Encoder Ey
maps these physical states into a latent vector Z;, enabling the policy n* to
operate seamlessly across both domains.

real world, taking a raw vision-based tactile image Ig.,; € RAXWX3 o input to

estimate the dense nodal deformation field Ug,,; € RV*? of the sensor surface:

Ugeal = fG(IReal) (6.1)

Complementing this, the Rendering Network (f,"), also from the previous
Chapter 5, serves as a validation and data augmentation tool by reconstructing
the tactile image from a given physical deformation state U. This reconstruc-
tion, denoted as I = fy (U), ensures the physical consistency of the repre-
sentation. These networks are trained using a collected dataset of real-world
interactions paired with ground-truth physics labels derived from high-fidelity
FEM analysis.
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6.4.2 Online Simulation with Neural Physics Engine

Standard rigid-body simulators, such as MuJoCo [29], provide only sparse
contact points and forces (C, Fj;,,), which are insufficient for accurately mod-
eling soft-body interactions. To bridge this gap, the NPE is integrated directly
into the simulation loop. At each simulation step 7, the NPE takes the sparse

rigid-body collision data and predicts the high-fidelity nodal deformation Usg:
Us = NPE4(Cy, Fiim,t) (6.2)

This integration effectively upgrades the rigid-body simulator to possess soft-
body characteristics in real-time (< 10 ms), circumventing the computational

cost associated with full FEM solvers.

6.4.3 Unified Policy Learning and Deployment

The Sim-to-Real strategy relies on the shared tactile latent space. Instead of
feeding raw images or raw mesh data directly to the policy, a shared Tactile
Encoder (E4) was employed. This encoder maps the high-dimensional defor-
mation field U, whether generated by NPE in the simulation or estimated by

fp in reality, into a compact latent vector Z;:
Z; = E4(U) (6.3)

The control policy 7* then observes the robot’s proprioceptive state s; along-
side this unified tactile latent Z, to output the optimal action a, = 7*(s;, Z;).
Since Z, represents the same physical phenomenon in both domains, the pol-
icy trained in the simulation can be deployed directly to the real robot without

fine-tuning.

6.4.4 Architecture of the Geometry-Aware Neural Physics Engine

The raw input from the simulation consists of a set of discrete contact points

C ={p; f\;’l, where p; € R? denotes the spatial coordinates of the i-th contact
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point in the sensor’s local frame. To process this variable-sized, unstructured
input without information loss, a DeepSets architecture ¥ is employed. This
ensures that the geometric embedding is invariant to the permutation of input

points. The global geometric feature vector g € R¥% is defined as:

Ny
g=p|> o). (6.4)
i=1

where ¢ : R® — R% is a point-wise Multi-Layer Perceptron (MLP) that
projects each coordinate into a high-dimensional feature space, and p : R% —
R% is a global MLP that processes the aggregated signal.

To account for the magnitude of interaction, the extracted geometric
embedding g is fused with the scalar resultant force Fj;;,, € R obtained from

the physics engine. The global physical context hg;,4; 1S computed as:

hglabal = MLPfusian([g ” Fsim])a (65)

where || denotes the concatenation operation.

The sensor surface is modeled as a graph G = (V, &) to predict the
dense nodal displacement field U € RM>3, where M = 7509 is the number
of FEM nodes. The hidden state h§°> of every node v € V is initialized by
concatenating the global physical context with the node’s unique, fixed spatial
coordinate pos, € R3:

hi” = [heropar || pos,] (6.6)

Subsequently, a multi-layer Graph Convolutional Network (GCN) [225] is
utilized to simulate the propagation of stress. For each layer/ € {0,...,L—1},
the node features are updated as follows. First, neighbor features are aggregated

using mean pooling:

=) _ ) 1 0)
) =wh. h'", (6.7)
' IN(V)IME;‘V) “

where N (v) is the set of neighbors for node v, and W) is a learnable weight
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matrix. The final node update applies Layer Normalization (LN), non-linearity,

and a residual connection:
h{*Y = b)) + ReLU (LN (Bﬁ”)) (6.8)

After L layers, the Z-directional displacement d,, for each node is predicted by
a shared readout MLP:

Cz\v = MLPreadout (h\()L)) (69)

The final output is the dense displacement field U = { a?v}ﬂ’i 1

6.5. Neural Physics Engine

The major methodology was designed to create a computationally efficient,
yet physically grounded, surrogate model for soft tactile sensing within rigid-
body simulators. The process involves three key stages: the generation of a
high-fidelity ground truth dataset using a calibrated Finite Element Method
simulation; the design of a novel, Geometry-Aware GNN that serves as our
(NPE); and a principled training process that pairs fast simulation data with
the slow FEM ground truth.

6.5.1 Physics-Grounded Truth Data Generation

The foundation of our NPE is a large-scale, physically-annotated dataset de-
signed to capture a comprehensive range of contact phenomena. As illustrated
in Figure 6.2, this ground truth data was generated using a calibrated FEM
model of the tactile sensor. To ensure the learned model is robust and general-
izable, we created a dataset with extensive geometric and spatial diversity. A
set of diverse and complex indenters was used, ranging from simple primitives
like spheres and squares to shapes with sharp edges, textures, and non-convex
features. These indenters were used to create contacts at 492 unique contact

points distributed across the sensor’s surface, ensuring dense coverage of the
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Figure 6.2: Over 50,000-sample dataset used to train the NPE. Data was
generated using a calibrated FEM Model (left) by systematically applying a set
of diverse and complex Indenters (right) at 492 unique contact points (center)
distributed across the sensor’s surface, ensuring comprehensive coverage for
training a generalizable model.

entire region of interest. This systematic process resulted in a total of 50,000
unique contact samples, providing a rich and varied dataset for training our
geometry-aware network. As shown in Figure 6.3, each sample consists of a
full-field nodal displacement field for the 7,509 nodes on the sensor’s surface
mesh. For supervised learning tasks requiring contact regions, ground truth
contact masks are derived directly from the FEM nodal data. A contact is
defined where the normal displacement in the z-axis exceeds a threshold of
30 micrometers. The resulting binary mask undergoes a morphological pro-
cessing pipeline, including morphological closing with a 15 X 15 kernel and

contour-based refinement, to produce clean, continuous contact regions.

6.5.2 Architecture of the Geometry-Aware Neural Physics Engine

The raw input from the simulation consists of a set of discrete contact points
C= {p,-}fi’l, where p; € R? denotes the spatial coordinates of the i-th contact
point in the sensor’s local frame. To process this variable-sized, unstructured
input without information loss, a DeepSets architecture W is employed [226].
This ensures that the geometric embedding is invariant to the permutation of

input points. The global geometric feature vector g € R% is defined as:
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Figure 6.3: Representative samples from the 50,000-sample training dataset,
showcasing a variety of paired contact geometries. Each pair consists of the
rendered RGB Image (top) and the corresponding ground truth physical state,
shown as the FEM Nodal Data (bottom).

Ny
g=p|> o). (6.10)
i=1

where ¢ : R® — R is a point-wise Multi-Layer Perceptron (MLP) that
projects each coordinate into a high-dimensional feature space, and p : R% —
R% is a global MLP that processes the aggregated signal.

To account for the magnitude of interaction, the extracted geometric
embedding g is fused with the scalar resultant force Fj;;,, € R obtained from

the physics engine. The global physical context hg;,4; i computed as:

hglobal = MLPfusion([g ” Fsim])a (6-11)

where || denotes the concatenation operation.
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The sensor surface is modeled as a graph G = (V, &) to predict the
dense nodal displacement field U € RM*3, where M = 7509 is the number
of FEM nodes. The hidden state hEO) of every node v € V is initialized by
concatenating the global physical context with the node’s unique, fixed spatial
coordinate pos, € R>:

hi” = [hgiopar || POs,] (6.12)

Subsequently, a multi-layer Graph Convolutional Network (GCN) [225] is
utilized to simulate the propagation of stress. For each layer/ € {0, ..., L—1},
the node features are updated as follows. First, neighbor features are aggregated

using mean pooling:

=(D) _ wolD) 1 Z 0)
B =wh . h', (6.13)
INDI LS

where N (v) is the set of neighbors for node v, and W is a learnable weight
matrix. The final node update applies Layer Normalization (LN), non-linearity,

and a residual connection:
KD = WD 4 ReLU (LN (B&’))) (6.14)

After L layers, the Z-directional displacement d,, for each node is predicted by
a shared readout MLP:

d\v = MLP;cadout (h\(zL)) (6.15)
The final output is the dense displacement field U = {a?v}’V”: T

6.5.3 Training Methodology

The Geometry-Aware Graph Neural Network (GA-GNN) is trained using a
supervised learning framework to approximate high-fidelity FEM simulations.
The training pipeline, illustrated in Figure 6.4, utilizes a paired dataset of rigid-

body interactions and ground-truth FEM deformations to establish a mapping
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Figure 6.4: Training architecture of the Neural Physics Engine. The input
vector {M, d, Xp, Xc, Fsin } derived from the rigid-body simulation is encoded
via DeepSets and processed by the GA-GNN. The network is optimized to
minimize the Mean Squared Error (MSE) between the predicted nodal state
(U) and the ground-truth FEM data (U).

from sparse contact primitives to dense continuum mechanics.

Data Generation and Input Representation To ensure robust generaliza-
tion, a training dataset is generated by simulating a diverse set of contact
interactions using primitive indenter geometries (e.g., spheres, cylinders, flat
plates) within both the rigid-body simulator (MuJoCo) and the FEM solver.
For each interaction frame ¢, the input vector 7; is extracted from the rigid-body

simulation:

‘Z—l = {M7d7XOaXC’FSim} (6‘16)

where:

M The topological connectivity (adjacency matrix) of the sensor mesh.

d: The indentation depth of the contacting object.

Xo: The local point cloud representing the object’s geometry.

Xc: The sparse set of detected contact points on the sensor surface.
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* Fim: The resultant contact force vector computed by the physics engine.

Ground Truth Physics Targets The target output 7; corresponds to the full-
field nodal data obtained from the high-fidelity FEM simulation. This includes
the dense displacement field U € RV*3 and the nodal force distribution F €
RN3 for all N = 7509 nodes on the sensor surface. These values serve as the

ground truth for supervision.

Network Architecture and Loss Function The sparse geometric inputs
(Xo, X¢) are initially processed by the DeepSets Encoder to extract a permutation-
invariant geometric embedding. This embedding is fused with the scalar
physics parameters (d, Fj;;,) to form a global context vector, which is then
injected into the GA-GNN.

The GA-GNN predicts the estimated nodal state S = {Us, Fs}. The net-
work parameters are optimized end-to-end by minimizing the Mean Squared
Error (MSE) between the prediction and the FEM ground truth. The total loss

function L;,;4; 1s defined as:

Liorar = MSE(U, Us) + 4 - MSE(F, Fs), (6.17)

where U represents the ground-truth nodal displacement, Uy is the predicted
displacement by the NPE, and A is a weighting coefficient for the force re-
construction term. This objective forces the network to learn the underlying
continuum mechanics governing the sensor’s deformation, ensuring that the

predicted high-dimensional state maintains physical plausibility.

6.6. Simulation Experiment

6.6.1 Generative Surrogate Model for FEM Data Synthesis

To facilitate the creation of a large and diverse training dataset for the NPE
without the prohibitive computational cost of continuous FEM simulation, a

generative model for FEM was first developed. This model, termed the "FEM

153



point network," was trained on the initial 50,000-sample FEM dataset, which
is the extended dataset from the one in Chapter 5. It learns to map a target
contact state, defined by an indenter’s local geometry point cloud and a desired
indentation depth, directly to the corresponding high-fidelity physical outputs,
such as the full-field nodal displacement, surface contact force, contact patch,
and location.

Figure 6.5 presents a qualitative validation of this FEM generation model’s
performance. The model takes a target contact state (indenter geometry point
cloud and depth) as input and outputs the complete nodal displacement field,
bypassing the need for a full FEM simulation. The visual results demonstrate
the model’s ability to accurately reproduce a wide range of complex contact
patterns. The figure displays a predicted nodal displacement fields for 16 dif-
ferent indenter geometries at their maximum indentation depth of 1 mm. The
color map represents the normal displacement (d;), clearly showing the unique
contact signature of each shape. The high fidelity of these predictions validates
the surrogate model’s capability to function as a data factory. This allows for
the rapid, offline synthesis of vast amounts of physically grounded training

data, a crucial step for effectively training the final, real-time NPE.

6.6.2 Evaluation of Shared Latent Space via Behavior Cloning in Peg-
in-Hole Task

The efficacy of the proposed shared latent representation is evaluated through
a high-precision Peg-in-Hole task simulated within the MuJoCo environment.
The experimental setup, illustrated in Fig. 6.6, consists of a URSe manipulator
equipped with a parallel gripper and dual DIGIT tactile sensors. To validate
the utility of the NPE in downstream learning tasks, a Behavior Cloning (BC)
framework is implemented.

During the expert demonstration phase, the robot is teleoperated to insert
apeg into a hexagonal aperture. At each time step, the NPE processes the sparse
contact primitives to generate high-fidelity nodal displacement fields for both

the left and right sensor pads (N = 2552 nodes per sensor). As shown in the
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Figure 6.5: Qualitative results of the FEM surrogate model. A full-field nodal
displacement predictions is generated by the model for a variety of complex
indenter geometries at maximum indentation depth.

middle row of Fig. 6.6, the NPE captures distinct, asymmetric deformation
patterns corresponding to the contact geometry and force distribution on each

finger.
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Figure 6.6: Behavior Cloning with shared tactile latent space. (Top) The sim-
ulation setup for the Peg-in-Hole task. (Middle) High-fidelity nodal displace-
ment fields generated by the NPE for the left and right sensors (N = 2552).

(Bottom) The corresponding latent vectors leef " and Z;ig " extracted by the
encoder, which serve as the input to the policy network.

Simulation Demonstration Imitation Learning

These high-dimensional physical states Ug are subsequently compressed
by the pre-trained Tactile Encoder E4 into compact latent vectors, denoted
as def " and Z;ight (bottom row of Fig. 6.6). A control policy 7 is trained to
map the combined state vector—comprising the robot’s proprioception and the
concatenated latent tactile features [Zéef ’ Z;ig "
velocity actions. The successful convergence of the BC policy demonstrates

that the latent space Z, derived from the NPE-predicted deformation U, ef-

—to the expert’s end-effector

fectively preserves the critical geometric and contact information required for
contact-rich manipulation tasks.

To validate the proposed Sim-to-Real framework, we conducted a series
of physical experiments focusing on the high-precision Peg-in-Hole task. The
primary objective was to assess the efficacy of the shared tactile latent space
in enabling zero-shot transfer of policies trained via Behavior Cloning (BC)
from simulation to the real world.

The training dataset was collected entirely within the MuJoCo simulation

environment using the teleoperation interface described in Section ??. A total
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of 137 expert demonstrations were recorded. To ensure stable grasping and
prevent the peg from slipping during rapid movements, the robot was controlled
using Inverse Kinematics (IK) velocity commands rather than position control.

The trained policy was then deployed on a real-world URSe manipulator
equipped with dual DIGIT sensors. For the real-world rollout, we performed
100 trials for each experimental condition. It is important to note that no fine-
tuning of the neural network weights was performed using real-world data.
The only adaptation allowed was the calibration of the robot’s joint angles
to compensate for minor kinematic discrepancies between the simulated and

physical robot.

6.6.3 Policy Learning via Behavior Cloning with Latent Features

To enable the control policy to operate effectively across domains, a dataset of
expert demonstrations is generated within the simulation environment using
teleoperation. This dataset, denoted as Dy;,,,, consists of M trajectories, where
each trajectory i contains a sequence of length 7; comprising the robot’s pro-
prioceptive state s;, the encoded tactile latent vector z;, and the corresponding

expert action a;. The dataset is formalized as:

s Iy M
Dyim = {5020, a7} 1 | (6.18)

i=1

where z, = Ey (Us™™m) is the latent representation derived from the NPE-
predicted physical state.

The control policy 7*, parameterized by ¥, is trained to map the combined
state (s,z) to the optimal action. The training objective is to minimize the
discrepancy between the policy’s predicted action and the expert’s ground-
truth action. The Behavior Cloning loss function L z¢, which jointly optimizes

the policy parameters ¢ and the tactile encoder parameters ¢, is defined as:

Lyc($.4) = Bp-n,,, |7 (5,2) - a" ] (6.19)

By minimizing this objective, the encoder E, learns to extract task-relevant
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physical features (such as contact location and force magnitude) from the
dense deformation field, while the policy 7* learns the manipulation strategy

conditioned on these physical abstractions.

6.6.4 Sim-to-Real Validation via Trajectory Replay

The validation of the proposed framework was conducted through a digital
twin experiment, designed to directly compare the sensory output of the NPE-
enhanced simulation against data from a real-world, dynamic task. The goal is
to demonstrate that the simulation can faithfully reproduce the complex tactile
phenomena observed during a physical interaction.

For this experiment, a successful peg-in-hole manipulation task was first
performed and recorded using a real URSe robot equipped with a parallel
gripper and two DIGIT sensors, as shown in Figure 6.7 (left). The complete
robot joint trajectory and the corresponding high-resolution video stream from
the real DIGIT sensors were recorded. Subsequently, the exact joint trajectory
from the successful episode was replayed in the NPE-enhanced MuJoCo en-
vironment. During this simulated replay, each time a sensor’s rigid proxy
made contact with the virtual object, the NPE was invoked in real-time. As
illustrated in the right panel of Figure 6.7, the NPE takes the sparse contact
data from the simulator and generates a rich, physically-annotated data stream,
including the full-field nodal displacement, the contact patch shape, and the
final rendered tactile image. A qualitative comparison between the synthetic
tactile image stream from the simulation and the video from the real DIGIT
sensor reveals a high degree of visual and structural similarity, validating that
the NPE-enhanced simulation can faithfully reproduce the sensory experience

of a complex, real-world contact-rich task.

6.7. Result

The performance of the NPE was evaluated in two stages. First, a quantita-
tive and qualitative validation of the NPE’s core prediction capabilities was

conducted against the ground truth dataset. Second, the entire framework
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Figure 6.7: Sim-to-Real validation via trajectory replay in a peg-in-hole task.
The real-world experimental setup (left), where a robot arm equipped with
dual DIGIT sensors performs the contact-rich manipulation task. During the
simulated replay of this task (right), the NPE is activated upon contact. From
the sparse simulator data, it generates a stream of rich, physically-annotated
data, including the predicted nodal displacement (top), contact patch shape
(middle), and the final rendered synthetic tactile image (bottom)

was validated in a dynamic, contact-rich manipulation task via a real-to-sim

trajectory replay experiment.

6.7.1 Quantitative and Qualitative Validation of the NPE

The NPE was evaluated for its accuracy in predicting physical contact prop-
erties and its utility in downstream perception tasks. The quantitative results,
summarized in Table 6.1, demonstrate the high fidelity of the model. The
model achieves 99.34% accuracy in identifying the correct contact nodes and
predicts the full-field nodal displacement with a low RMSE of 0.53 mm com-
pared to the ground truth FEM data.

The modularized NPE accurately identifies the location of the contact
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Metric Value

Contact Point Accuracy 99.34 %
Nodal Displacement RMSE  0.53 + 0.07 mm
Orientation Estimation Error 0.3 + 0.02 deg
Force Estimation RMSE 0.32+0.03N

Table 6.1: Quantitative Performance of the NPE
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Figure 6.8: Functional demonstration results of the NPE in physics-based
simulation. For a simple indentation, the model accurately localizes the contact
patch and the corresponding contact force profile.

and the corresponding contact force profile, as shown in Figure 6.8 for con-
tact localization. The complex contact patch generated by an asymmetrically
grasped object contains sufficient detail to accurately estimate the object’s ori-
entation, achieving a mean error of only 0.3 degrees (Table 6.1). Furthermore,
the predicted nodal deformation allows for the estimation of the total contact
force with an RMSE of 0.32 N compared to the FEM ground truth. These
results confirm that the NPE produces an accurate and physically rich output

suitable for advanced perception tasks.

6.7.2 Sim-to-Real Transfer Performance

We compared the success rate of the policy using our proposed Shared Latent
Space (where the policy inputis Z = E4(U)) against a Baseline approach that
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does not utilize the physically grounded latent alignment (i.e., mapping raw
sensory features directly to actions without the intermediate nodal displace-
ment field U).

The results are summarized in Table 6.2. The proposed method achieved
a success rate of 89%, demonstrating robust zero-shot transfer. In contrast,
the baseline method achieved only a 43% success rate. This significant perfor-
mance gap highlights that without the domain-invariant physical representation
U, the policy struggles to generalize to the real-world tactile domain, likely
due to the "reality gap" in raw optical signals (e.g., lighting variations, sensor

noise).

Table 6.2: Sim-to-Real Peg-in-Hole Success Rates (100 Real-World Trials)

Method Tactile Representation Zero-Shot Success Rate
Baseline Direct Feature Mapping Yes 43%%
Proposed (Ours) Shared Latent Space (Z) Yes 89%

The failure cases in the baseline were primarily characterized by the
robot’s inability to correct for minor misalignments during the contact-rich
search phase, suggesting a lack of interpretable physical feedback. The pro-
posed method, however, successfully exhibited "wiggling" and alignment be-

haviors learned from the simulation experts.

6.7.3 Comparison with Related Works

To contextualize our results, we compare our success rate with recent state-
of-the-art methods in tactile Sim-to-Real transfer for insertion tasks (Table
6.3).

Our method’s performance (89%) is competitive with top-tier reinforce-
ment learning approaches like GCS (91%) [66] and outperforms standard
domain randomization techniques often cited in works like Tactile Gym [62].
Unlike SplatSim [68], which relies on heavy visual rendering fidelity, or Chen
et al. [201], which relies on marker tracking, our approach achieves high fi-

delity through the abstraction of contact physics (NPE), proving that a shared
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Table 6.3: Comparison with State-of-the-Art Tactile Sim-to-Real Methods

Reference Method Sim-to-Real Strategy Success Rate
Tactile Gym [62] RL (PPO) Domain Randomization ~60-80%
Chen et al. [201] RL + TacSL. Marker-based Feature Alignment 83%
GCS [66] RL (PPO) Geometric Contact Smoothing 91%
SplatSim [68] BC (Visual) Gaussian Splatting Rendering 86%
Ours BC + NPE  Shared Physical Latent (U) 89%

latent space grounded in continuum mechanics is a highly effective bridge for

the reality gap.

6.7.4 Application: Sim-to-Real Trajectory Replay

To validate the entire framework in a dynamic scenario, a digital twin ex-
periment was conducted. As illustrated in Figure 6.9, a successful real-world
peg-in-hole task, involving phases such as ‘Peg Contact’ and ‘Hold‘, was
recorded using a teleoperated robot. The recorded joint trajectory (‘Action
Replay ‘) was then executed in the NPE-enhanced MuJoCo simulation.
During the simulated replay, the NPE was activated at each contact event,
generating a stream of physically grounded tactile data. A qualitative com-
parison between the synthetic data generated by the NPE in simulation and
the sensory data from the real DIGIT sensor reveals a high degree of corre-
lation, demonstrating the NPE’s ability to faithfully reproduce the key events
of the real-world interaction. This experiment validates the potential of the
NPE-enhanced simulation to serve as a high-fidelity environment for devel-
oping and testing contact-rich manipulation policies, thereby narrowing the

sim-to-real gap.

6.8. Discussion

The experimental results demonstrate that the proposed NPE can serve as a
fast and accurate surrogate for high-fidelity FEM simulations of soft tactile

sensors. The quantitative validation confirms that the model predicts full-
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Simulation
A
Action Replay ._# a

Peg Contact

Figure 6.9: The sim-to-real trajectory replay experiment. A successful real-
world manipulation sequence, involving contact and holding phases, is
recorded. The robot’s actions are then replayed in the simulation, where the
NPE generates a corresponding stream of high-fidelity tactile data, demonstrat-
ing the framework’s ability to create a digital twin of the real-world interaction.

field nodal displacements with sub-millimeter accuracy when compared to
the ground truth. Crucially, the ablation studies reveal that the geometry-
aware architecture, which processes the local 3D point cloud of the contacting
object, is essential for achieving this high performance. Without this geometric
input, even a spatially-aware GNN model fails to capture the correct shape of
the deformation, confirming that both force and geometry are critical input
modalities.

The success of the digital twin trajectory replay experiment is the primary
validation of the entire framework. The high degree of similarity between the
synthetic tactile data stream and the real sensor’s output suggests that the NPE
has learned a model of contact mechanics that is not only accurate with respect
to the FEM data it was trained on, but is also a faithful representation of real-

world physics. This result is enabled by the Rigid Proxy architecture, which
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allows a standard rigid-body simulator to be augmented with a specialized,
learned model for a specific physical phenomenon—in this case, soft-body
contact. Instead of attempting to solve the complex contact equations with an
online iterative solver, our approach leverages a significant offline training cost
to achieve extremely fast and consistent online inference.

Despite these promising results, the current framework has several limi-
tations. First, the NPE is trained on quasi-static FEM data and therefore does
not explicitly model dynamic, rate-dependent effects such as viscoelasticity
or high-frequency vibrations. Second, the model’s accuracy is fundamentally
bound by the fidelity of the original FEM simulation; any inaccuracies in the
FEM calibration will be inherited by the NPE. Finally, the current model is
specific to the geometry and material properties of the trained sensor. Future
work should address these limitations by extending the training dataset to in-
clude dynamic events, which would enable the development of a recurrent,
spatiotemporal NPE. Further research could also explore transfer learning
techniques to adapt the NPE to different sensor geometries with minimal re-
training and investigate the use of the NPE’s rich output to provide dense

rewards for reinforcement learning agents.
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Chapter 7.

Conclusion of Dissertation

7.1. Integrated Methodological Framework

This dissertation was motivated by a fundamental barrier in modern robotics:
the simulation gap for deformable systems in robot learning. While rigid-body
physics engines have enabled the rapid progress of reinforcement learning
for articulated robots, they fundamentally lack the capacity to represent the
continuous compliance and complex contact mechanics essential for physical
intelligence. Conversely, high-fidelity numerical methods such as the Finite
Element Method (FEM) provide the necessary physical ground truth but are
computationally intractable for the massive data requirements of learning
algorithms. This work has addressed this division by proposing and validating
a unified methodological framework for data-driven physics abstraction.

The thesis of this research is that the complex, infinite-dimensional behav-
ior of continuum systems can be effectively compressed into low dimensional,
differentiable inference models without sacrificing essential physical fidelity.
By utilizing high-fidelity FEM simulations not as runtime solvers but as offline
teachers, this dissertation has developed a set of data generation engines—fast,
physically grounded surrogates that replace iterative numerical solving with
constant-time neural inference.

The research divides the problem into two topologically distinct domains
to apply the proposed framework. Part A mainly dealt with the action domain,
where deformation occurs during the actuation of the soft body in robotic
components. The methodology abstracted volumetric deformation into a kine-
matic surrogate model, preserving compatibility with rigid-body solvers to
enable macroscopic control. On the contrary, Part B introduced the perception

domain, where deformation occurs during contact between the object and the
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robot hand. The methodology abstracted boundary deformation of the vision
based tactile sensor into an NPE using graph neural networks, capturing the
topological propagation of force to enable microscopic tactile sensing. Col-
lectively, these contributions provide the essential infrastructure to bridge the
reality gap, enabling the training of contact-aware and physically intelligent
robots that can move, manipulate, and perceive with the richness of the real

world.

7.2. Summary of Contributions

This dissertation systematically validated the proposed framework through a
logical progression of four research topics, each addressing a specific facet
of the simulation gap. The investigation began by establishing a theoretical
baseline using classical methods. Chapter 3 derived an analytical kinematic
model for a pneumatically actuated origami manipulator based on geomet-
ric first principles. This study demonstrated that while geometric abstraction
can enable real-time nonlinear control for specific structures, the analytical
derivation lacks the generality required for arbitrary soft bodies. The reliance
on bespoke mathematical formulations confirmed that classical methods are
insufficient for scaling to the diverse morphologies of soft robotics, thereby
motivating the shift to data-driven approaches.

To address these limitations, Chapter 4 introduced a generalizable surro-
gate modeling framework for the macroscopic dynamics of soft manipulators.
By combining Model Order Reduction on FEM data with a Transformer-based
dynamics model, the continuum physics were abstracted into a virtual kine-
matic chain. This approach successfully bridged the gap between accurate
offline physics and fast online inference, creating a high-fidelity simulation
environment compatible with standard reinforcement learning libraries. The
validation of this framework through zero-shot sim-to-real policy transfer
demonstrated that abstracting continuum mechanics into a kinematic structure
allows soft robots to leverage the stability and speed of rigid-body solvers

while retaining their essential physical compliance.
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Shifting focus to the contact interface, Chapter 5 addresses the data
scarcity problem for vision-based tactile sensors. A rigorously calibrated FEM
simulation was utilized to generate a paired dataset of real images and physical
states, enabling the training of bidirectional networks. This work produced an
automatic annotation engine capable of inferring dense force and deformation
fields from raw images, as well as a rendering engine for synthesizing pho-
torealistic tactile data. This established a physically grounded link between
the visual and physical domains, solving the critical labeling bottleneck that
hinders data-driven tactile perception.

Finally, Chapter 6 integrated these methods to create a runtime contact
simulator. A geometry-aware GNN was trained to predict nodal deforma-
tion based on local contact geometry, effectively replacing the iterative FEM
solver. The resulting NPE was integrated into a rigid-body simulator via a rigid
proxy architecture, achieving real-time performance with millimeter-scale ac-
curacy on a contact-rich task. By enforcing a topological inductive bias, the
model demonstrated zero-shot generalization to novel geometries, validating
that learned physics engines can provide the high-fidelity contact mechanics

required for contact-rich manipulation tasks.

7.3. Limitations and Critical Analysis

Despite the validation of the proposed abstraction framework, several critical
limitations inherent to the methodologies and the scope of validation remain.

In the domain of body dynamics, both the geometric analysis and the sur-
rogate modeling framework encounter difficulties under conditions of extreme
deformation. While the surrogate model captures the primary modes of motion,
the approximation of a continuum body as a kinematic chain breaks down when
the material undergoes severe twisting, buckling, or high-frequency oscillation
that exceeds the training distribution. Under these conditions, the topological
assumption of a link-joint structure diverges from the physical reality of the
continuum material. Furthermore, the applicability of these pipelines is sensi-

tive to the specific actuation method and structural morphology of the robot.
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Although the data-driven abstraction methodology is theoretically applicable
to various forms of deformable bodies, this dissertation primarily validated it
on pneumatic origami structures. The generalization of this framework to other
soft actuation types, such as tendon-driven or dielectric elastomer actuators,
requires further demonstration to confirm its universality.

In the domain of contact perception, a fundamental challenge remains
in identifying the true latent information required for general contact tasks.
While Chapter 5 demonstrated that force and deformation fields can be inferred
from images, the question of exactly which physical features are essential for
general-purpose manipulation remains open. This work validated the utility of
the extracted latent information, specifically nodal displacement and normal
force, in the context of a peg-in-hole task in Chapter 6. However, this represents
only a single instance of validation. A broader range of contact-rich tasks,
such as sliding, rubbing, or texture discrimination, is necessary to determine
if the current set of abstracted features is sufficient for diverse manipulation
scenarios. Recent works on unified tactile representations [227,228] suggest
that a more comprehensive universal contact manifold may be required to
support cross-task generalization.

Additionally, the current perception model relies on a quasi-static assump-
tion. The network infers force from a single static frame, treating the elastomer
of the sensor as purely hyperelastic. However, real silicone gels exhibit sig-
nificant viscoelastic properties, where the force response is rate-dependent
and subject to hysteresis. By ignoring the temporal history of deformation,
the current model incurs errors during high-speed dynamic interactions. Fu-
ture iterations must incorporate time-series modeling to explicitly learn the
history-dependent behavior of the material.

A significant scope limitation of this research is the focus on the defor-
mation of the robot itself, leaving the simulation of deformable objects largely
unaddressed. Real-world interaction frequently involves rigid robots manip-
ulating soft objects or soft robots interacting with soft environments. While

the neural physics engine theoretically models the relative action-reaction at
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the interface, implying that the deformation of an object could be modeled
similarly to the sensor, this extension was not explicitly validated. This omis-
sion is primarily due to the extreme difficulty of acquiring ground truth data
for passive deformable objects. Unlike the sensor, which can be instrumented,
obtaining precise force and shape data from a passive deforming object would
require invasive instrumentation or complex external tracking systems. Conse-
quently, the validation of this framework for deformable object manipulation
remains a critical gap that must be addressed to achieve fully generalizable

physical intelligence.

7.4. Future Directions and Long-Term Vision

The methodologies established in this dissertation lay the groundwork for
several transformative research directions in the field of robot learning.

Self-Supervised Physics Learning. A significant bottleneck remains the
reliance on FEM for ground truth generation. Future work could leverage the
bidirectional pipeline developed in Chapter 5 to implement a self-supervised
learning paradigm. By utilizing the rendering network as a differentiable de-
coder, the perception model could be trained directly on vast amounts of
unlabeled real-world tactile videos using a photometric reconstruction loss.
This would allow the physics abstraction to refine itself against real-world data
without explicit FEM supervision, effectively closing the sim-to-real loop
autonomously.

Force-Aware Foundation Models. Current robot foundation models pri-
marily process visual and linguistic tokens, lacking a deep understanding of
physical interaction. The data generation engines developed in this work pro-
vide the capability to generate massive, physically annotated datasets of con-
tact and deformation. Future research should explore tokenization strategies
for this high-dimensional physical data. By integrating these physics tokens
into large-scale transformer training, it becomes possible to imbue foundation
models with a true physical intuition, enabling them to reason about force,

compliance, and material properties alongside vision and language.
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Unified Differentiable Simulation. While this work utilized arigid proxy
to integrate with standard simulators, the ultimate goal is a fully differentiable,
end-to-end simulation pipeline. Future work should focus on integrating the
differentiable inference models directly into the computation graph of differ-
entiable physics engines. This would enable end-to-end gradient optimization
for hardware design, control policy, and perception algorithms simultaneously,
realizing the vision of co-designing the robot’s body and brain for physical

intelligence.
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Appendix A.

Data-Driven Lookup Table (LUT) Method
for OCM Mapping

The mapping functions F4 and Fp for the OCM were computed numerically
using a data-driven approach, as it is challenging to express these functions
explicitly due to the complexity of the origami structure. The LUT method
is used to store and efficiently search the forward and the inverse mapping

relationships between strain (€), pressure (P), force (F) and moment (M).

A.1. Forward Mapping Function Derivation

The forward mapping functions F4 and Fp are numerically calculated and
stored in a structured data format. These functions are derived by discretizing
the strain and bending angle relationships and evaluating the force and moment
through numerical differentiation. The function F4 defines the axial force as a

function of strain (€) and internal pressure (P) as shown in
FZ :FA(69P)9 (Al)

which the same equation as in the main text. Since the force is derived from

the strain response, numerical differentiation is applied:

dll(e,P) Il(e + A€, P) —Tl(e, P)

F P) =
(€ P) e A€

(A.2)

where I1(e, P) represents the potential energy stored in the system. The dif-
ferentiation step Ae is set to a small value to ensure high resolution in the
LUT.

The function Fp defines the moment as a function of the bending angle
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0¢ and the arc length S¢:

M =TFg(bc,Sc). (A.3)
The moment is computed through numerical differentiation based on the strain
energy in multiple dihedral angles within the OCM:

Oll(0c,Sc) _ II(Oc + A8, Sc) — (B¢, Sc)

M(O-,Sc) =
(B¢, Sc) 90¢ A

(A4)

By applying these numerical differentiation methods, fine-step LUT data is

generated for both F4 and Fp, providing high-resolution mappings.

A.2. Inverse Mapping Function Derivation

Inverse mapping functions are constructed by inferring the target variable
from precomputed LUT data. Given the difficulty in explicitly solving these
relationships, the inverse function is inferred by grouping related values and
performing numerical interpolation.

The inverse function F, " estimates strain given a known force and pres-

sure:
e =F.T(F., P). (A.5)

The inference process is based on searching for the closest entry in the LUT:
€* = argmin |IFA(6, P) - FZ| . (A.6)
€

A search algorithm such as binary search was applied to efficiently retrieve
the inverse-mapped value.
Similarly, the inverse function Fg' estimates the bending angle given a

known moment and arc length (so called back bone length):
0c =Fg' (M, Sc). (A.7)

The inference is performed by searching for the best match in the precomputed
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LUT:
0;. = arg min [Fe(6c, Sc) — M. (A.8)
C

A.3. Efficient LUT Computation and Deployment

The LUT computation was performed on a high-performance workstation to
enable high-resolution numerical differentiation and efficient inverse function
inference. The LUT was structured as a multi-dimensional table with finely
spaced intervals of strain, pressure, bending angle, and moment values.

To ensure efficient retrieval of values, the LUT was implemented using
binary search interpolation, which allowed a logarithmic search approach for
rapid inverse mapping retrieval. Additionally, spline interpolation was used to
smooth the approximation method to estimate values between LUT entries. The
optimized search allows rapid inference of inverse function outputs, reducing
computational overhead for real-time applications.

These functions were set in the Python script, which did not require the
memory storage in the MCU board. The final optimized LUT was deployed to
the MCU by compressing the table into fixed-point format for efficient search.
The target pressure values were computed on the workstation and transmitted

to the MCU using a structured communication protocol:

P = fity (Text: ©). (A9)

The MCU received the optimized pressure setpoints and executed real-time

control adjustments based on the precomputed inverse function mappings.
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Appendix B.

Kinematics and Force Analysis of a

Two-Segment Origami Manipulator

The two-segment origami manipulator consists of two modular sections con-
nected in series, each comprising multiple extended origami cylinder modules
(extended OCMs in Figure 1). This continuum-type robot was built to demon-
strate the application of the developed manipulator. The estimation of the 3D
configuration is explained in this section, which is the extended version of
modeling introduced in the main text. Unlike a single-section manipulator,
the deformation of each segment is influenced not only by the external force
applied at the tool center point (TCP) but also by the cumulative weight of
the upper segment. Figure .B.1-(A) illustrates the segmented structure, where
each segment is characterized by its arc length (Scx), bending angle (6¢k),
and bending direction (¢cy). Each extended OCM within a given segment
shares the same internal pressure, resulting in uniform deformation across the
segment under the piecewise constant curvature (PCC) assumption. For the
manipulation task, the continuum robot was fixed at the frame making the
robot upside down as shown in Figure 8 and the Figure S.B.1-(A).

The two-segment origami manipulator undergoes deformations based on
the applied pressures(P) and external forces (F) at the TCP. The force and
moment equilibrium conditions are established to compute the internal forces,
bending moments, and interaction effects between the two segments. The
final TCP position and orientation are then estimated using measured actuator

lengths from Hall sensors and orientation data from the IMU.
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B.1. Force Equilibrium Equations

Each extended OCM consists of three actuators positioned at 120° inter-
vals. The pressures in these actuators generate internal forces that contribute
to the general deformation of the manipulator. Given the input pressures
(P, Py, P3, P4, P5, and Pg) from the pressure regulators and the force ap-
plied at the TCP (F,, Fy, andF;). The axial force in each OCM is determined

using the force-strain mapping function:
F.;i=Fu(e,P;), 1=1,2,3,4,56. (B.1)

The external force applied at the TCP propagates downward, influencing
both segments. The force equilibrium equation for the first segment is written
as

Fa1+Fp1+ F31=F,+ W, where (B.2)

F, is the z-direction component of the 7,,;. The second segment must support
both its own structure and the reaction force from the first segment. The force

equilibrium equation for the second segment is
Fap+Foo+F3p =R+ R+ Rz + W (B.3)

where R;; 1, R;2.1, R;3,1 are the reaction forces of the interface at the connection
point between the two segments. The horizontal force equilibrium conditions
are:

Fag+Foi1+Fa31=F, Fyi1+Fpi+Fg31=F,. (B.4)

The moment equilibrium for the first segment must now include the

unknown reaction moment from Segment 2 at the interface as:
M1 — Minex = d(Fp,1sin 120° + F_3 1 sin 240°) and (B.5)

My,l - Mint,y = d(le’l - FzZ,l cos 120° — FZ3,1 COS 2400), (B6)
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where My and My, are the unknown interactions at the interface. Simi-
larly, the moment equilibrium for the second segment must incorporate the

interaction moment:
Mx,z + Mint,x = d(FZZ’z sin 120° + FZ3,2 sin 2400) and B.7)

My’Q + Mint,y = d(le,Z - FZQ,Z cos 120° — FZ3,2 COS 2400). (B.S)

Due to the high torsional stiffness of the structure, torsional moments remain
negligible:
M,1=0, M,>=0. (B.9)

For the second segment, the reaction moment at the base supports the
external force at the TCP:

Minx = d(Fn sin 120° + F.3.5 sin 240°), (B.10)

Miny = d(F;12 — F2c0s 120° — F;35 cos 240°). (B.11)

The interaction moment is computed using the bending response of the
second segment:
M = Fz" (02, Sca), (B.12)

Miney = F5"(0c2, Sca). (B.13)

Solving for the actuator forces in the first segment are

M, | —M;y, My 1 —M;y,
Fo+ Wy = 4 ’l\/§d L
FZL] = 3 ’
F + ‘4/1 _ 2(Mx,l_Mint,x)
4
3d
Foyy = V3 and (B.14)
’ 3
M, 1—M; My 1—Mine x
FZ + ‘4/1 _ y,1 y nt,y + ,1\/§d1nt,
Fa1= 3
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Solving for the actuator forces in the second segment are

My 2+ M,; My 2+ M;
Roi1+ Ry + Rz + Wy + =2y 4 22—

V3d
le,z = 3 s
2(Mx,2+Mi ,x)
Roii+ Roi + Rea 1 + Wa — === 2 (B.15)
Fzz,z = 3 and :
My 2+ Min,y My 2+ My,
Ropi+ Rop + Res 1 + Wa — =g =
FZ3,2 = 3

B.2. TCP Position and Orientation Estimation

The arc lengths for each segment are determined from the Hall sensor mea-

surements:

i +elr+ el Iy +els+ el
SCIZ%, Sczzw_ (B.16)

The segment-wise bending angles are estimated using the inverse moment-

curvature mapping:
0ci =Fs'(My1,5c1),  Oca =Fs' (M2, Sc2). (B.17)

The bending directions are given by:

0 0
o1 =tan”' 2|, per=tan”' [2]. (B.18)
Ox Ox
Using successive transformations, the TCP position is obtained as:

Thp =TET,. (B.19)

where

prce = Rip2 + p1. (B.20)
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(A) (B)

Segment 1
{Sc1, bc1,0c1}
w1}

Segment 2
{Sca, dca) Oc2}
Wy}

{Texe}

Figure B.1: (A) Continuum robot composed of two segments of the origami
manipulator. (B) Length information in the manipulator segment.

Expanding the transformation equations:

Xtcp Sc2sinfc; cos ¢ Sc18infcq cos ey
Yrep | = Ri | Sc2sinfcr singer | + | Scr sinfey singey | - (B.21)
ZT1cp Scz cos B¢y + 2c SCI cos ¢

The force and moment equilibrium equations couple the deformation re-
sponses of the two segments. The interaction moment is derived using the
inverse moment-curvature function, ensuring that force transmission between
segments is accurately modeled. The TCP position and orientation are com-
puted using Hall sensor measurements for segment lengths and IMU measure-
ments for orientation tracking. The use of SE(3) transformations provides a

structured approach to estimating the pose of the end effector.
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Appendix C.

Calibration of the Hall-effect sensor

The actuator is equipped with a Hall effect sensor (SS41, Honeywell) em-
bedded within it to measure the magnitude of the surrounding magnetic field,
as shown in Figure S.C.1-(A). The distance to the magnet can be estimated
by placing it near the sensor and measuring the output signal. This output
measurement is then used to estimate the entire length of the actuator, as
explained in the modeling section. A highly linear mapping between the mea-
sured voltage and the distance value is shown in Figure S.C.1-(B). The sensor
is connected to an analog-digital converter (ADS1115, Texas Instruments,
USA), reading 16-bit digits to measure the distance between the neodymium
magnet and the sensor. The mapping voltage ranges from 0 V to 5 V, with
a measurement range of at least 1.9 V to 2.1 V. To ensure that the voltage
matches the distance data, the actual distance measurement is carried out us-
ing a linear encoder of the tensile tester machine, which is the same machine
introduced in the main text. The mean error of the Hall effect sensor was
0.231 mm average, and it exhibits a high level of linearity, up to R?=0.96 in
distance and voltage. In cases where the neodymium magnet is not aligned
with the Hall effect sensor, such as during bending, we tested whether the
sensor could still provide accurate linear distance output. The first assumption
was that the length (s) could be measured directly, even when the origami
configuration was bent, as shown in Figure S.C.1-(A). The experimental setup
to collect Hall effect sensor signals during bending deformation is shown in
Figure S.C.1-(C), where the OCM was moved through all possible orientations
(q) with a fixed backbone length (s). The error was defined as the difference
between the initial length of the backbone (s) and the measured distance value.

The error is shown in Figure S.C.1-(D), with the mean error (red box) and
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standard deviation boundaries (purple box). The average measurement error

was 0.131 mm, which was acceptable for measuring the actuator length.
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Figure C.1: (A) Length measurements during both linear and bending de-
formations. The axial height of a single layer (/y/N) is shown for the axial
deformation, while the curved length of the neutral axis (s) represents the
bending deformation. (B) Sensor signal output from the Hall effect sensor,
mapped against the predefined displacement of the single layer. A linear fit-
ting function was derived based on the calibration results. (C) The bending test
setup for the OCM, measuring the Hall-effect sensor signal within the ROM
and checking the tilted configuration of the magnet relative to the sensor. (D)
Error analysis of the Hall effect sensor length measurements across various
orientations at each backbone length.
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Appendix D.

Action Space Mapping Between Real and

Simulation

Two sources of discrepancy between the pressure input levels in the real robot
and the SOFA FEM simulation were addressed using two MLP-based mapping
functions: fmrprs and fmrpsp. The objective of both mappings was to align
the configuration state X across different domains by estimating the calibrated

actuation inputs. Two mapping functions were defined as below.

* frs maps the real pressure input Pr € R? to the SOFA-calibrated pres-
sure Pg € R3, so that the resulting TCP position Xg in simulation

matches the real robot TCP position Xg.

* fsp maps the FEM simulation pressure Pg € R3 to the joint angles
6p € R" in the surrogate model, where n, is the number of controllable
DOFs.

In both cases, the goal is to minimize the RMSE between matched state

variables:

Nn

- 1
RMSE (Xief, X) = J N Z

ref

2

1=

where N, is the number of samples and X, X are the target and predicted
configuration states, respectively.

Both frs and fsp shared the same network design and training procedures:
* Architecture: 3-layer fully connected MLP with [64, 64, 64] neurons

* Activation Function: ReLU for hidden layers, linear for output
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Input/Output:

- frRs : PR Pg
- fsp:Ps— 0p

Loss Function: Mean squared error (MSE) on configuration states

Optimizer: Adam

Learning Rate: 1 x 1073

Batch Size: 32

Epochs: 200, with early stopping after 20 stagnant epochs

Framework: PyTorch, single NVIDIA RTX 4070 12G

The dataset for frs was obtained by applying static pressure combinations
to both the real robot and the SOFA model, using 7 = 0. The output Xz and
X were used to generate training targets. For fsp, the input was the pressure
from the FEM domain and the target was the optimized joint angle vector 6p,
derived via L-BFGS-B optimization.

Once trained, the networks were used in two ways. The function frs was
used to infer calibrated FEM pressure inputs Pg that produce configuration
states that match the real robot given a real pressure Pg. The other fsp enabled
the control of the surrogate model using the joint angle predictions learned

from the pressure-based input.

211



Appendix E.
Model Order Reduction by Proper

Orthogonal Decomposition

The model order reduction (MOR) using proper orthogonal decomposition
(POD) was applied to accelerate soft body simulation while retaining dominant
deformation behavior [41,44]. The vector of full-order nodal displacement in
each time step is denoted:

p(t) e R*V,

where N is the number of nodes and each entry contains the displacements

X,y,z. The initial number of nodes N was 4327. A snapshot matrix Sn €

R3NVXM was formed by stacking time-series nodal states:

Sn = [p(t1), p(t2), ..., p(tm)].

These snapshots were obtained from SOFA simulations with randomized pres-
sure inputs and external forces to sufficiently explore the configuration space,

which was applied M = 20K samples in singular value decomposition (SVD):
Sn=UzV',

where:
» U € R¥V3N: gpatial POD modes,
o ¥ e R3V*M: singular values,

o VT € RM*M: temporal coefficients.

On a workstation with an AMD Ryzen 9 processor and 128 GB RAM, full

singular value decomposition of the matrix Sn € R12981X20000 wag completed
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in approximately 20 minutes using multithreaded CPU execution. The first

r = 1223 dominant modes were retained to construct the reduced basis:
®=U, e PV p(r) ~ Da(r),

where a(t) € R!'??3 represents the generalized coordinates in the reduced
space.
The full-order dynamics of the deformable manipulator are governed by

the equation
M(p) b = P(r) - F(p,p) - H' (1),

where p(7) € R®M is the nodal displacement vector, and M, P, F, H, and A
denote the mass matrix, external pressure-induced forces, internal elastic and
damping forces, constraint Jacobian, and Lagrange multipliers, respectively.
To reduce the system, the nodal displacement vector was approximated
using a linear projection onto a reduced basis: p(f) ~ da(r), where ® €

R3V*X1223 is the POD basis containing the first » = 1223 dominant spatial

R1223

modes obtained via singular value decomposition, and a(t) € are the

generalized coordinates. Substituting this into the full-order dynamics and

applying Galerkin projection yields the reduced-order system
M, 4 = P,(r) — F.(a,a) — H. A,(1),

where the reduced matrices are defined as

M, = ®"M(p)®,
P, (1) = ®"P(1),
F,(a,a) = ®'F(da, ®a),
H, = ®'H, a,=A.

The mass matrix M(p) was precomputed using the SOFA FEM engine,
assuming a constant material density of 1040 kg/m?. The external force vector

P(#) was generated using SOFA’s SurfacePressureConstraint applied to
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three surface cavities. The internal force term F(p, p) includes both elastic
and damping components, computed using a corotational FEM model with
Rayleigh damping coefficients @ = 0.05 and g = 0.005. The constraint Ja-
cobian H captures the influence of fixed supports and contact constraints,
and was extracted from the simulation using FixedConstraint and contact
handling modules. The Lagrange multipliers A(¢) were solved internally by
SOFA’s constraint solver and retained during projection. The reduced system
captures the dominant dynamics of the manipulator with significantly lower
computational cost.

The reduced coordinates a(z) were further used to construct a compact
state vector Xg(7) € R"s, containing physically meaningful quantities required
for learning and control. This vector included the Cartesian position of the tool
center point Xtcp(?), the curvature «(t), the arc length [(¢), and the orien-
tation matrix R(#) of the end-effector. These reduced-order representations
served as input features for inverse models, forward dynamics networks, and

reinforcement learning policies.
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Appendix F.

Grouped Joint Constraints

To ensure that the surrogate model exhibits physically realistic deformation be-
havior, joint angle constraints were applied to adjacent joint groups. The action
space of the surrogate model includes multiple rotational and prismatic joints,
denoted by 6,,,6,,,8y,, corresponding to each segment i. To prevent abrupt
bending or unrealistic shape transitions, the following inequality constraints
were enforced as

16y, = Oz, | < 6,

16y, — 6y,,,1 < 6,, and (F.1)

04, = 0y, | < O,

where 6, = 0.01, 6, = 0.01, and 64 = 0.005 are constants that limit inter-
joint variations. These bounds were chosen to reflect the smooth, continuous
curvature observed in the real robot under actuation and external loads. The
absolute joint limits were also constrained to reflect the physical range of
motion:

0x,6, € [-0.2,0.2] and 64 € [0,0.02]. (F.2)

The constraints in Equation F.1 were applied within the control envi-
ronment and enforced during optimization and policy rollout. The lower and
upper bounds were embedded into the control step function and the optimizer
(Algorithm 1) to restrict the exploration space to feasible regions. In addition,
constraints enforce spatial smoothness across joint segments, consistent with
the continuous curvature observed in physical continuum robots. In the ab-
sence of such constraints, the surrogate model may exhibit abrupt curvature
reversals across layers, corresponding to high-frequency deformation modes
that are not physically realizable due to material and pneumatic coupling.

The constraint values dg,, dg,, 04 effectively limit the second-order variation
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in curvature, promoting globally feasible shapes. Without such constraints,
the surrogate model can exhibit unrealistic behavior, such as large curvature
changes between links, as shown in Supplementary Figure F.1-(a). These con-
figurations are not observed in the real system, even under dynamic loading.
In contrast, applying the grouped constraints results in smooth and physically

plausible postures, as shown in Supplementary Figure F.1-(b).

@

Z[m]

Prevented configuration Y [m]

\

(b)

X
A )
N
i
e -
S —

Constrained configuration Y [m] -0.08  -0.05 X [m]

Figure F.1: (a) Example of an unrealistic configuration in the surrogate model,
where multiple curvatures appear across joint segments, deviating from the
physical behavior of the real robot. (b) Example of a feasible configuration
generated by applying joint constraints, ensuring smooth deformation.
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