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Abstract

This paper introduces a novel approach for designing soft robotic manipulators using origami cylinder modules (OCM:s) as
building blocks. An OCM is defined as a pneumatically actuated soft robotic unit capable of both linear and bending
deformations, contributing to a lightweight and compact robotic system. A rigorous mathematical model was developed to
estimate the force and moment outputs of the OCM, with experimental validation confirming the accuracy of the
prediction. Multiple OCMs were integrated into a continuum manipulator, and their performance was evaluated by various
manipulation tasks. The results demonstrate that the OCM model predicts the behavior of the actuator with a high accuracy
in the estimation of force and moment. The origami manipulator also achieves a wide range of motions (ROM) with
relatively small errors, showcasing potential for practical applications. These findings introduce a new method for de-
veloping soft robotic manipulators made of origami-based air chambers that offer lightweight and compact designs. The
mathematical model of the OCM holds implications for simulating actuator behavior in real-world applications, while the
performance of the origami manipulator shows the potential for practical implementation. This study provides valuable
insights into the advancement of robotic manipulators based on origami structures, allowing a useful set of tools in the field
of robotics.
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Introduction dynamics (Kim et al., 2021; Wang et al., 2018). The non-
linear nature of folding mechanisms (Tachi 2010), coupled
with variations in material properties (Ji et al., 2021),
complicates the prediction and control of these systems.
Researchers have attempted to overcome these hurdles
through various model-based control strategies, including
finite element analysis (FEA) (Grazioso et al., 2019),
lumped parameter models (Della Santina et al., 2020), and
machine learning techniques (Thuruthel et al.,, 2018).

Origami-inspired robots have emerged as a novel and
versatile category within the field of soft robotics,
leveraging the principles of traditional Japanese paper
folding to create simple and lightweight structures capable
of complex three-dimensional movements (Peraza-
Hernandez et al., 2014; Rus and Tolley 2018; Turner
et al., 2016). This innovative approach has found applica-
tions across diverse sectors, including manufacturing
(Meloni et al., 2021), biomedical devices (Johnson et al.,
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Furthermore, geometric and strain energy-based modeling
approaches have been widely employed to describe origami
structures (Kaufmann et al., 2022; Zhang et al., 2021). These
methods have been particularly effective in capturing the
deformation characteristics of Yoshimura-patterned actua-
tors, as seen in prior studies employing internal balloon
actuators or hybrid actuation mechanisms (Zhang et al.,
2024). However, these approaches often assume simplified
mechanical approximations that limit their applicability to
real-time control. Moreover, inverse kinematics (IK) solu-
tions in origami-inspired manipulators are typically for-
mulated either through rigid-link approximations (Zhang
etal., 2024) or iterative numerical optimization (Santoso and
Onal 2021), which increase the computational complexity.

To address the issues in heavy computation and real-time
state estimation in the soft manipulator, researchers have
explored the use of proprioceptive soft actuators capable of
detecting their own internal states, such as current positions,
bending angles, or even forces, without the need to add
external sensors. Specifically in soft robots, the systems are
designed to detect the deformation or motion states of the
actuators directly, providing an alternative to relying solely
on modeling (Li et al., 2022; Luo et al., 2017; Wang and
Chortos 2022). These types of proprioceptive soft actuators
have self-sensing mechanisms, which typically employ
resistive (Ku et al., 2024; Truby et al., 2020; Wirekoh et al.,
2019; Zhou et al., 2020) and capacitive (Dawood et al.,
2020; Scimeca et al., 2019) sensors or optical (Choi et al.,
2023; Jung et al., 2020; Kang et al., 2023) sensors to
measure the strain, orientation or bending curvature of the
soft manipulators. Although this self-sensing capability
offers unique advantages, fabrication can be challenging due
to the process of integrating complex components into the
mechanisms or structures. Accurate measurement of the
configuration of a proprioceptive soft manipulator often
requires multiple sensors, leading to difficulties in fabri-
cation and calibration. These requirements result in a system
that is not only bulky, but also complex due to the need for a
wide sensing range and robustness against noise (Laschi
et al., 2016; Thuruthel et al., 2019).

In this paper, our aim is to tackle the dual challenges of
computational complexity in model-based control methods
and the difficulties in precise estimation of the configuration
of soft origami manipulators. Our approach encompasses
the development of a highly functional soft manipulator
utilizing solely origami structures, coupled with the deri-
vation of a simplified kinematic model. To begin with the
development of the soft manipulator, we first propose the
design of modularized, pneumatically driven bellow-type
actuators by incorporating an origami cylinder structure into
the architecture of soft manipulators with an embedded self-
sensing mechanism at each module. The use of cylindrical
origami patterns, such as the Yoshimura or Kresling design,
brings about two principal benefits: the intrinsic function-
ality of the origami structure itself and a significant

simplification in the kinematics of motion (Vander Hoff
et al., 2014; Zhang et al., 2023). The origami cylinders are
characterized by their elastic properties, which enable axial
collapse along predefined folding lines, akin to a spring
mechanism (Filipov et al., 2015; Hong et al., 2020; Westra
et al., 2021). This feature allows for broad, compliant
movements that are ideally suited to the demands of soft
actuators used in different robotic systems, such as gripper
(Chen et al., 2021; Li et al., 2019), manipulators (Santoso
and Onal 2021; Suzuki and Wood 2020), and locomotive
robots (Sivaperuman Kalairaj et al., 2021; Yu et al., 2020).
Furthermore, when it comes to pneumatically powered,
origami cylinders provide a large ROM, force, and ease of
reconfiguration, increasing their versatility and effectiveness
in various soft robotic applications (Lee and Rodrigue 2019;
Zaghloul and Bone 2023; Zou et al., 2021). However, in
spite of the uniqueness and the strength of the origami
cylinder, there are few applicable methods practically
available to estimate the kinematics, especially when ac-
tuated pneumatically. Instead, a great deal of research is
known to analyze the origami cylinder in static manner.
Conventionally, complex origami structures have been
analyzed using non-linear FEA (Liu and Paulino 2017),
post-buckling analysis (Hunt and Ario 2005), and numerical
simulations (Liu and Paulino 2016; Zhu et al., 2022), es-
timating the deformation of thin-walled rigid structures
similar to those of origami. Although the solving methods
are well defined, they are still complex and computationally
expensive to use in dynamic scenarios.

Therefore, we propose a simplified kinematic model for
our soft manipulator. The main idea of the simplified ki-
nematic model is to bring in the essential assumptions and
features from the prior works and simplify the structure
(Filipov et al., 2015; Russo et al., 2023; Zhang et al., 2021).
The proposed model establishes a mapping of three im-
portant parameters: the 3D configuration of the origami
actuator, the input signals, and the applied external loads.
This allows us to reduce the complexity of the required
sensor system to a single length-sensing unit that is compact
and does not interfere with the process of estimating the
kinematics and controlling the manipulator. By integrating
the proposed simplified model with proprioceptive char-
acteristics, this approach effectively controls the soft ma-
nipulator. It takes advantage of both model-based and
proprioceptive methods in a synergistic way.

In summary, this study presents three main contributions.
First, a modularized pneumatic actuator is designed and
fabricated using the Yoshimura origami cylinder, which
features proprioceptive functions to measure its configu-
ration. These modules are integrated into an extended soft
manipulator system, showing promise for diverse applica-
tions. Secondly, a simplified kinematic model for the ori-
gami cylinder is proposed, enabling accurate pose
estimation in conjunction with its self-sensing mechanisms.
The derived model uses a minimal proprioceptive sensing
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mechanism, significantly simplifying the control strategy
while maintaining high performance and reliability. Finally,
a continuum robot made of multiple actuation units called
origami cylinder modules (OCMs) has been demonstrated in
various applications, such as object picking and manipu-
lation using an integrated gripper and performing path-
planning tasks. These applications demonstrate the versa-
tility of the developed OCMs, highlighting their potential in
practical use cases, such as precise object handling, tra-
jectory following, and modular extension of robotic
systems.

Materials

This section describes the proposed design of a soft ma-
nipulator that utilizes pneumatically actuated origami ac-
tuators, as depicted in Figure 1(A). The manipulator was
constructed using multiple OCMs, each of which shows the
characteristic properties of the Yoshimura cylinder, enabling
both linear and bending deformation. Figure 1(B) briefly
illustrates the OCM fabrication process using polyethylene
terephthalate (PET) films and polypropylene (PP) sealing

tapes. More details on the fabrication and the material se-
lection criteria are described in Supplemental Information—
A.

Figure 1(C) shows the design of the OCM and its
sensing mechanism. For detecting longitudinal dis-
placement, a hall effect sensor (SS41, Honeywell) and a
neodymium magnet were installed in the hollow air
chamber of the cylinder. This sensor module was
compact and did not interfere with the existing struc-
ture, providing a linear response to the distance between
the sensor and the magnet (see Supplemental
Information—-B). Each OCM actively contracts and
extends in the range of —60% to 60% of its initial length
0f 40 mm and to bend up to 1.5 radians. The single OCM
is as light as approximately 25 g, primarily due to its
base material, thin PET films. Most of the weights are
attributable to the 3D printed parts.

The continuum robot is composed of extended OCMs
arranged in parallel, as shown in Figure 1(A). To facilitate a
more straightforward kinematic analysis, the design com-
monly adopts a piecewise constant curvature (PCC) ap-
proach for the continuum robot, as suggested in previous
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Figure I. (A) Proposed origami continuum manipulator, comprising two segments. Each segment was constructed from multiple OCMs,
of which is capable of generating both linear and bending motions. The characteristics of these two distinct deformation modes are
analyzed. (B) Fabrication of a pneumatic chamber based on the Yoshimura cylinder pattern. This pattern was engraved on a 100 xm
polyethylene terephthalate (PET) film using the laser CNC machine (Trotec Speedy 300, Trotec) and sealed with 50 um polypropylene
(PP) tape to create an airtight chamber. The cylindrical shape was formed, and then the Yoshimura origami pattern was folded. (C) 3D-
printed air sealing caps and neodymium magnet located inside the folded Yoshimura pattern. A hall-effect sensor and a neodymium

magnet were used to measure the displacement of a single layer

of the actuator.
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studies Webster III and Jones (2010), Grazioso et al. (2019).
In this configuration, the OCMs were connected using a
radial frame, shown in Figure 1(A)) to establish a uniform
curvature across each single segment of the robot. There are
four extended OCMs in the design, three were strategically
positioned in an equilateral, which was essential for gen-
erating the actuation motions of the module. The fourth
cylinder, located at the centroid of the triangle, plays a role
as a structural backbone, adding an additional stiffness (Al
Abeach et al., 2017) to the manipulator and covering the
connecting components, such as electric wires and pneu-
matic tubes.

Model

The proposed OCM comprises a cylindrical chamber
crafted using the Yoshimura pattern. The Yoshimura
cylinder is generally known to be a volumetric origami
structure that is rigid when folded properly (Suh et al.,
2022). However, it exhibits the ability to deform under
specific conditions when constructed from materials
with low stiffness (Martinez et al., 2012; Zhang et al.,
2020). The deformation of the cylinder along the crease
lines and the thin facets occurs due to axial compres-
sion, extension, and bending (Cai et al., 2016). More-
over, the Yoshimura cylinder has considerable torsional
stiffness, which allows the twisting motion to be ne-
glected in the analysis (Santoso and Onal 2021).

The objective of modeling is to analyze the kinematics of
the Yoshimura cylinder on the basis of its volumetric ori-
gami characteristics. Given its linear volume reduction, its
axial strain (€) can be defined as the ratio of the change in
axial length (I — Iy) to the original length (/p):

e=l=h (1)
ly

The initial length (/o) is the design parameter de-
termined when the pattern is made. The Yoshimura
cylinder can also be bent, resulting in the bending angle
(¢), the curvature (x), and the length of the neutral axis
for bending (s). Thus, the configuration (C) of the ac-
tuator includes these variables alongside the axial strain
(€), as shown in Figure 1(A). The controllable inputs of
the system are the pressure of the compressed air (P) and
the external load (7), and 7 accounts for both force (F)
and moment (M). The aim is to derive the relationship
between the input and the output elements expressed as
f» which will be the kinematic function:

Text :fOCM (P) C)7 (2)

where C represents the geometric information of the
Yoshimura cylinder that determines the configuration, as
shown in Figure 2(A).

Design parameters of the Yoshimura cylinder

The kinematic behavior of the Yoshimura cylinder, shown
in Figure 2(A) with its characteristic repeated patterns, is
affected by several design parameters. We identify the
smallest foldable unit within these patterns as a single
layer, constructed by tessellating identical isosceles tri-
angles. For the OCM design, it is assumed that all N layers
are repeated and experience uniform deformations.
Therefore, this single layer plays a crucial role in deter-
mining both the ROM and the overall configuration of the
actuator. Each single layer consists of an isosceles triangle
that has two parameters: the length of the base side (L) and
the angle of the side (8,), as depicted in Figure 2(A).
Table 1 summarizes the design parameters considered in
the analysis.

Assumptions for pattern analysis on Yoshimura
origami cylinder

Three assumptions were adopted to simplify the actuator
characterization. First, the actuator is considered as a con-
servative system, allowing the application of the virtual
work principle to correlate the external force with the
configuration of the actuator (Chou and Hannaford 1996).
This approach facilitates a straightforward relationship
between the applied forces and the resulting deformations.
Second, we assume an uniform stress distribution across the
entire cylindrical structure, leading to consistent deforma-
tion across all layers, whether through linear compression/
extension or bending. Given that the cylinder comprises
repeated single layers, the entire structure can be concep-
tualized as a stack of multiple layers, as shown in
Figure 2(A). Consequently, the kinematics of this single
layer is uniformly applicable to the entire structure. Lastly,
for analytical simplicity, the cylinder is simplified as a truss
structure, serving as a simplified equivalent model. As il-
lustrated in Figure 2(C), a single layer forms a polyhedron
consisting of 16 isosceles triangles, creating a closed
structure with 12 vertices and 40 edges. Figure 2(B) depicts
the abstraction of the Yoshimura cylinder model, where the
vertices and edges are represented as nodes and elastic bar
elements, respectively, with each edge modeled as an elastic
bar with a single degree of freedom (DOF) that can store
strain energy through deformation. Also, rotational springs
simulate the hinges of the origami to capture the elastic
deformations along the crease lines. The potential was
calculated based on the amount of rotation angle between
the neighboring facets that share each hinge (Kshad et al.,
2018). Moreover, due to the non-linear deformation expe-
rienced by the Yoshimura cylinder as a result of its rigidity,
previous studies dealing with volumetric origami structures
have incorporated additional elements to account for the
facet deformation of the origami structure (Filipov et al.,
2015; Liu and Paulino 2016; Zhang et al., 2021). Referring
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Figure 2. (A) Configuration of the Yoshimura origami cylinder and the definition of a single-layer. (B) Yoshimura origami cylinder
treated as energy-conserving, with each vertex represented as a node and each edge as an elastic bar element with a single DOF.
Rotational springs simulate hinge deformations, accounting for the nonlinear facet behavior. (C) Nodes indication of the single layer and
linear deformation when axial force (F,) applied (left) and the brief deformation configuration according to the strain € (right). By the
definition, € can vary from —1 to the bounded maximum value €* that is the geometric limit. (D) Bending configuration of the single
layer when moment M is applied and with bending angle ¢/N. The bending angle can be expressed with the parameter de and has a range

from 0 to €p/2.

to these results, we also adopted some basic features in the
simplified model, as shown in Figure 2(C). The figure details
the arrangement of 12 nodes (a;; ~ as4) and an additional
four nodes (m; ~ my) added at the midpoint of the horizontal
edges to simulate the facet deformation. The truss model
employs the properties of virtual materials, with two defined
stiffness coefficients (k;, and ;) representing the axial and
torsional resistance, respectively, to accurately reflect the

Table I. Design parameters and specifications.

Design parameters L 30 mm
lo 40 mm
(] 7/8 rad
N 10
ny 40
np 32
w 13¢g
Fitting coefficients ky, 1.3 N/m
kp, 0.1 N/m
Manipulator Wm 238 g
d 60 mm
Sc 210 mm

kinematics of the actual structure. From the first assumption
that the actuator behaves as a conservative system, the total
potential energy stored in the origami cylinder can be ex-
pressed as:

Htotal = Hbar + Hhinge - Hwnrk: (3)

where each term represents a different contribution to the
system’s energy:

® TII,,: The strain energy of the bar elements accounts
for the elastic deformation along the edges of the
origami structure. This strain energy is calculated
based on the elongation or compression of the bar
elements, which is directly related to the nodal dis-
placement and the geometric configuration of the
Yoshimura cylinder.

® Ile.: The rotational energy stored in the crease lines
reflects the energy required to rotate the facets relative
to each other. This is determined by the change in the
dihedral angles between the adjacent facets, computed
from the nodal positions and the geometric constraints
of the pattern.
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® II,,4 The work done by the applied pressure, ac-
counting for the external force applied to the structure.
The work is calculated as the product of applied
pressure and the change in volume as the cylinder
deforms.

The calculation of the total potential energy also incor-
porates the principle of virtual work during deformation,
which accounts for changes in the relative positions of the
nodes and the dihedral angles between facet pairs.

Given our assumption of uniform deformation across the
structure, the analysis of potential energy focuses on de-
termining the nodal displacements within a single layer. The
geometric constraints inherent in the Yoshimura pattern
were used to calculate the position and deformation of each
node by solving a system of multi-variable equations.

In order to clarify further, the first segment of the ki-
nematic derivation focuses on the axial deformation of the
Yoshimura cylinder, which is a purely linear deformation.
This type of deformation is depicted in Figure 2(A). The
second segment of the kinematic derivation focuses on
bending deformation, which can occur simultaneously with
axial deformation in the Yoshimura structure. To ensure a
comprehensive analysis, these types of motion are treated in
separate analytical processes, allowing a detailed exami-
nation of each type of deformation.

Kinematics modeling of the Yoshimura cylinder

Axial kinematics. The axial deformation kinematics of a
single layer in the Yoshimura cylinder is determined by
correlating the axial force (F,) with the input pressure (P)
and the strain (€), as represented as

F, =TF,(¢,P). “

Here, F4 is a function shown in Figure 1(A), derived
from three potential energy components outlined in equation
(3). The potential energy within the bar elements (T, ) is
expressed as

(0 =N Shi(L(d - L), ©)

where €, represents the initial strain when the cylinder is
unloaded and at a neutral state. These type of strain energy
based analysis is well defined method as shown in prior
works (Zhang et al., 2021) in Yoshimura origami struc-
ture. Due to the geometric constraints of the Yoshimura
cylinder, the parameter € is bounded theoretically in € €
[—1, €*], where €* is the value of L tan 6, the height of the
isosceles triangle (see Figure 2(A)). In Figure 2(C), there
are a total of n, bar members shown in a three-
dimensional coordinate system. The length of i/ mem-
ber is a function of € and expressed as L,(€). Assuming the

. .. . th
uniform load distribution across each i” member, the

potential energy is calculated with a constant stiffness per
unit length k;, and the length of each bar element at a
certain strain (€) can be calculated based on the distance
between each node and the geometric constraints of the
Yoshimura cylinder. The detailed coordinates of the nodes
and the geometric constraints were described in
Supplemental Information—C.1.

The subsequent terms corresponds to the potential energy
of the rotational hinges due to the angle variation between
the facets, which can be expressed as

Nh 1
A _ z : 2
Hhinge(e) =N - EkhLi(e)‘ei(e) - 01'(60)| . (6)

A dihedral angle (6,;) is defined as the angle between
two adjacent facets in a single layer, as shown in
Figure 2(B). In a single layer, there are a total of n;, dihedral
angles that can be defined by combinations of two neigh-
boring facets connected to each hinge. Similarly to equation
(5), the strain energy resulting from the angle change was
considered in the folding lines. The coefficient representing
the rotational stiffness per unit length is denoted by &, which
is multiplied by all the lengths of the hinge members L(€)
when calculating the total potential energy. The types of
dihedral angles in an axial deformation case are summarized
in Supplemental Information—C.1.

The final component considers the volume change due to
the applied pressure (P) inside the actuator. The volume of a
single layer under strain € is set to V,(€) and can be easily
calculated using the nodal positions. Hence, the virtual work
resulting from the pressure P can be explicitly derived as

HA

work

(E,P) = PAVA = P(VA(E) — VA(EQ)), (7)

which is linearly proportional to pressure P.

Eventually, the three terms that comprise equation (3) can
be expressed using the design parameters (N, 8, L, and /)
and two fitting parameters (k, and k). Incorporating
equations (5)—(7) into equation (3) allows the total potential
to be articulated as a function of strain (€) and pressure (P) as
the following:

(e, P) = I

bar

(6) + Hﬁinge(e) - 1_Iﬁfork (6, P) (8)

The axial force is equal to the derivative of the axial
potential energy, with the variable € under an assumption of
energy conservation. Therefore, the kinematics related to the
net axial force (F,) and the strain (€) can be expressed as

=T, (e, P) ©)
maintaining the form presented in equation (4).

Bending kinematics. When subjected to a load that induces a
moment, the Yoshimura cylinder undergoes bending
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deformation. The bending deformation of the single layer is
characterized by two configuration variables, the neutral
axis length (s/N) and the bending angle (¢/N) of the cylinder.
Let us define a function Fp that correlates the moment in a
single layer with configuration variables as

M =TFy(¢/N,s/N). (10)

Assuming identical deformations across all N layers, a
moment M applied to the entire cylinder affects each layer
uniformly, and the bending angle is also divided equally
with the number of layers as ¢/N. Due to the structural
symmetry of the cylinder, each layer exhibits a pure
bending deformation. Figure 2(D) illustrates the defor-
mation of a bent single layer from the perspective of the y-
z center plane, where the displacement of the node cor-
responds to the bending angle ¢/N. For example, the
nodes a», and a,4, initially at the same coordinate on the z-
axis (1/2/yN), indicating the initial axial strain, move
symmetrically. These coordinates will move in the op-
posite direction but with the same magnitude. If this
magnitude of z-coordinate deviation defined as d/, z-co-
ordinates of the nodes a,, and a,4 will eventually move to
(121N + ol) and (1/2[,N — 6l), respectively. The variable

ol was used for the simple expression of all node positions,
which depends on the bending angle ¢/N and the length of
the neutral axis s/N. The geometric relationship between
the original configuration (¢, 5) and 6/ can be derived and
depicted in Figure 3(A), introducing additional angles and
edge lengths for calculation. Two angles defined in the y-z
plane as

Io/2N — ol
Ltanf, )’ and
Iy/2N + 51)

61 (51, l()) = Si1171 <
(11)

il
6,(31,1y) = sin ( T tand,

These two angles can be expressed with variables ¢/ and
lp. By using these angles, the additional edge lengths defined
as t; ~ t3 can be expressed as

t(dl,1p) = L tané, cosb),

(01, 1y) = L tanf, cosb,, and

_ Ltanf, sin6,
(0L 1) = tan(¢p/2N)

(12)
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Figure 3. (A) Cross section of a single layer under pure bending. Additional variables (t, t;, and t3) are defined and depicted in the cross
section of the single layer. These variables are used to derive the relation between the configuration parameters (¢, x, and s) with the
length . (B) Numerical volume variation by the bending angle (¢/N) calculated for each initial strain () from — | to €*, as shown with the
color code. The larger initial strain gives the larger variation. (C) Backbone length (s) of the single layer maintained the same as the initial
value Iy, during bending. The solid line shows the numerical calculation of s compared with the initial length Io/N of the single layer. The
maximum deviance was 0.183 mm at [o/N = 6 mm, where the strain was the maximum €*,
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These variables allow the derivation of the bending angle
and the curvature of the N-layered cylinder as

L tand), sin®
&(51,1y) = 2N tan™" <7an - o ‘), (13)
3
R((Sl, l()) =t +1 +L/2, and K(Csl, l()) = — (14)

Since the curvature is uniform across the single layer, the
length of the neutral axis s (or the backbone length) can be
considered as an arc length, which is

s(0L,l,) = Reb. (15)

Based on equations (13)—(15), the functions related to the
configuration parameters of the single layer were all related
to the variables ¢/ and /y. The range of the feasible bending
angle is also determined by the constraints condition from
the initial length (/y) of the single layer. For example, in a
single layer, the value of the z-axis of the node a4 cannot be
negative due to the geometric constraints imposed by the
neighboring layer. Therefore, the feasible range of 6/ is 0 <
ol < [y/2N.

A notable result here is that /, or s is independent of the
bending angle ¢/N. This characteristic is verified nu-
merically by calculating the positions of all nodes and
actually confirming the equation (15). As plotted in
Figure 3(C), once the initial height /o/N of the single layer
is set by the axial deformation from equation (24), s
remains constant to the backbone length before the
bending deformation with the maximum numerical error
0.183 mm. This indicates that bending can be decoupled
from axial deformation from equation (24), with pressure
and axial force affecting only the longitudinal length (/;)
or the neutral axis length (s).

The potential energy in the virtual bar and the hinge
elements can be obtained based on the coordinates ex-
pressed in terms of J/, applying the same geometric con-
straints as in the axial kinematics (see Supplemental
Information—C.2). Once node displacement is determined,
the facets deform, altering dihedral angles. The potential
energy in the bar (IT2 ) and the hinge elements (Hfmée)
together with the work done by the pressure (Hﬁork) can be
formulated as

np

% (31,1y) NZ—kb (01 + 1) — Li(l))’,  (16)

[0 (01, 1) =
NZ%/«;,L,-(&J)|@,-(51+IO) — 6:(lb)]*, and ("
2, (61,1y) = PAV(SL, ). (18)

Similar to the axial deformation case, there are various
combinations of facet pairs and corresponding dihedral
angles (see Supplemental Information—C.2). Here, AVjp
denotes the bending-induced volume change. The volume of
the single layer can be calculated in a numerical way using
tetrahedral decomposition based on the positions of the
nodes (Ho-Le 1988). Figure 3(B) displays the curves if AV
is a function of the bending angle (¢/N) at each initial strain
(€o). Since the feasible range of the (¢/N) becomes larger as
the length (/y/N) (or the initial strain (€y)) before the bending
increases, allowing for more significant volume deviations.
Unlike the axial case, where the volume change (AV) could
be explicitly formulated, the volume change in the bending
scenario is determined through numerical calculation and
the results are plotted in Figure 3(C).

Eventually, the total potential energy stored in a single
layer by the bending moment is given by
1t

11° (6, €o) = 11, + 11 5ok (19)

Here, o/ and [, are changed to strain de and ¢, re-
spectively, using equation (1) to align with the axial kine-
matics for consistent notation. The bending moment of the
actuator is derived by differentiating equation (19) with

respect to the bending angle (¢) from equation (13) which is

bar hinge

OIt? (Je, &)
o (de, &)

The moment derived from the derivative of the po-
tential energy is expressed with the substitute variable M
in equation (20). This is because the original target ki-
nematics equation was in the form of equation (10), which
directly relates the configuration ¢ and s to the moment.
Instead, since all configuration parameters are functions
of de and ¢, it is possible to define the same moment
function but in a different form that reflects this depen-
dency as

M(,s) = M(é,s), 2D

aligning with the original formulation in equation (10).

M(J¢, €) = (20)

M (J€, &), and Fp(¢b,s):=

Integrated kinematics. Leveraging the geometric constraints
and the structural assumptions outlined earlier, the kine-
matics of the linear and bending deformations have been
decoupled into two different types of configuration change.
The axial height (/y) or the initial strain (€y) was solely
determined by the axially applied force denoted by F, and
the pressure input P. Once this axial configuration is es-
tablished, an applied moment (M) induces bending in the
cylinder, altering configuration variables, such as the
bending angle (¢) and the backbone length (s). When an

external force zct = [F\,F), F.)" is applied to the tip of the
Yoshimura cylinder, the axial component force F., influ-
ences the axial elongation, while the lateral components (F),
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and F,) contribute to the generation of a moment. The
resultant moment is only the direction causing the cyl-
inder to bend (M in equation (21)), given that twisting
moments are considered negligible and the bending
orientation is nonspecific due to the symmetrical shape of
the cylinder. Consequently, the external load can be
represented as

F

. 22)
M

Toxt *=

Given that both components of the 7., were already
derived in equations (9) and 21, the kinematics can be in-
tegrated into

]FA(E,P)
Text =

= focu (P, C),
FB(Q'),S) fOC (P )

(23)

which is a comprehensive formulation in a form of the target
kinematics model equation (2). Therefore, the configuration
parameter C effectively encapsulates €, ¢, and s, offering a
unified approach to describe the kinematics of the Yoshi-
mura cylinder.

Inverse mapping using lookup table methods

To efficiently compute the forward and inverse kinematics
(FK/IK) of the origami manipulator for real-time control
tasks, a data-driven approach using lookup tables (LUTs)
was employed. Based on the FK mapping function in
equation (23), an inverse mapping function was derived to
estimate the actuator deformation when the input and the
external loads are given. The inverse kinematics of the
OCM can be formulated using two inverse functions: F ¥,
which maps the axial force to strain (€) and F}, which
maps the bending moment to configuration C. These
mappings are not analytically tractable due to the complex
interaction between structural elasticity and pneumatic
actuation. Instead, a dataset is precomputed through high-
fidelity simulations (Supplemental Video 1, Supplemental
Information—-E), creating a structured LUT for rapid
inference.

For each OCM, a dataset of (F,, P, €) values is generated
over fine intervals, allowing efficient interpolation:

e=T!(F,P). (24)

Similarly, for bending estimation, the precomputed
values for bending angles ¢ are stored as:

¢ =TFL(M,s). (25)

Using these inverse mapping functions, given a
known external force and pressure, we directly retrieve
or interpolate the corresponding strain and bending
parameters. Furthermore, these functions allowed to

simplify the kinematic modeling of the manipulator and
conduct the model-based control in real time. The de-
tailed structure of the LUT used in the controller and the
searching algorithms are explained in Supplemental
Information—H.

Model of the origami manipulator

The kinematic model of the Yoshimura cylinder, as derived
in the previous sections, establishes a foundational rela-
tionship between the OCMs and the soft continuum ma-
nipulator made of the OCMs. Although the forward
kinematics (FK) and the inverse kinematics (IK) for con-
tinuum robots, similar to our origami manipulator, are well
developed (Jones and Walker 2006; Ku et al., 2024). These
models require the prior knowledge of the mapping function
that relates the length of the actuator and the input signals.
Tendon-driven actuators often estimate their lengths using
the measurements from multiple encoders, but pneumatic
actuators lack the capability of directly measuring the length
information without employing additional modeling or
sensors. Thus, the derived kinematic modeling (equation
(23)) becomes essential for estimating the state of the
continuum manipulator.

Our continuum robot features multiple segments or
trunks, each powered by three independently operated ac-
tuators, similar to ours shown in Figure 4(A). The FK model
of such manipulators involves mapping of each length of the
actuator (/; ~ ) to the configuration of the manipulator
(Jones and Walker 2006; Ku et al., 2024). As shown in
Figure 4(B), there are three parameters required to mini-
mally determine the configuration of a single trunk, the
length of the backbone (S,), the bending angle of the trunk
(6.), and the bending axis direction angle (¢.), which are
calculated as

Se==z(L+L+15h),

W | —

2\ BB+ B b — bl — i,
B 3d ’

ot (B2
‘ V3 (L — k)

Assuming the PCC condition for each segment, where no
buckling and twist occur in each trunk, and having a unique
curvature, the position and the orientation of the tip at the
moving platform can be uniquely determined (Grazioso
et al., 2019). This results in the special Euclidean group
SE (3) transformation from the base frame {B} to the
moving frame {S} being calculable using the configuration
parameters detailed in equation (26) above (see
Figure 4(C)).

6. and (26)
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Figure 4. (A) Continuum origami manipulator with OCMs. (B) Configuration information of the origami manipulator, showing two
different frames: the fixed base coordinate B; and the moving frame §; for each j* parallel manipulator segment. The introduced
manipulator in this paper has three segments, indicated by dashed lines. (C) Simplified drawing the /" segment, with three pressure inputs
(Py to P3) independently controlling the three actuators. The mass load from neighboring segments (W) and the external loads (7)) are
accounted for in the kinematics. The actuator lengths (J;) can be estimated using the derived inverse mapping functions. (D) Control
schematic of the origami manipulator. The closed-loop system controls the manipulator to reach a desired configuration (C) by adjusting
the pressure regulators through a PD controller. The blue lines show the flow of the open-loop control, where the inverse kinematics
model is used to determine the required pressure inputs without feedback.

Spatial  configuration  estimation  of the  origami
manipulator. The origami manipulator consists of multiple
extended OCMs, as shown in Figure 1(A), each undergoing
complex deformation under applied forces and moments.
Unlike conventional rigid-link manipulators, actuator
lengths in pneumatic continuum manipulators are not di-
rectly controlled, requiring an IK formulation to determine
the configuration from input pressures (P) when external
load (z.,) is applied.

Each extended OCM is composed of three serially
stacked OCMs in a column, with three such columns po-
sitioned in parallel at 120° intervals. Due to the PCC

assumption, all OCMs in the same column share the same
internal pressure (P), the same strain response, and the same
bending angle (¢¢), ensuring uniform deformation across
the manipulator.

Following the inverse mapping formulation of equations
(24) and (25), the configuration of the origami manipulator
is derived by extending the kinematic model of a single
OCM while accounting for load propagation in the stacked
structure.

Forcee and moment equilibrium for the origami
manipulator. Each extended OCM is composed of three
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actuators positioned at 120° intervals around the central
backbone. The deformation of each actuator depends on
the applied external force (z.,,), the internal pressure
(P), and the constraints of the neighboring module.

In Figure 4(C), the total force equilibrium at the tool
center point (TCP) for the j-th floor in the manipulator is
given by:

3
Faj+Foj+Fa,=F.4+W+ Y W, (@7

k=j+1

where F, represents the external force applied at the top
plate, and W; accounts for the gravitational weight contri-
bution from the current and upper floors. The moment
equilibrium equations, considering the external moments M,
and M,, are formulated as:

M, = d(F,;sin 120° + F; ;sin 240°), and

M, = d(F..; — Fa, cos 120° — Fis cos240°). 2%

The torsional moment A is considered zero due to the
high torsional stiffness of the origami structure (Santoso and
Onal 2021). Then, the forces for the individual actuators can
be solved as:

M, M,
FoA W43 Wi+—24—=
Fl = T e A
zl,j — 3 >
2M,
FZ+W/+Z/37'+1W/(_—X
: k= 29
Fy;= 3 \/§d, and 29)
3 % Mx
P _FZ+VV}'+Zk:j+1Wk77+\/§d
23, — 3 .

These equations define how the load distribution affects
the individual external forces within a single OCM when
integrated into an entire manipulator.

Bending and strain estimation using LUTs. To determine the
general configuration of the manipulator, the bending angle
(®,) and the bending direction (8,) for each OCM must be
calculated. The total bending moment is:

M = \/M; + M.

Applying the precomputed LUT for bending, the de-
formation parameters are estimated as

(30)

+ M,

Oc =FL(M,Sc), and ¢ = tan™' <ﬁ)) 31
where S¢ is the backbone length of a single extended OCM.
Since all three OCMs in an extended OCM deform iden-
tically, the total manipulator bending angle is

atotal = 3¢C

Similarly, the strain in each OCM is obtained from the
inverse mapping function:

(32)

€ = Fl(F..;, P)). (33)

Actuator  length  estimation  for  the  origami
manipulator. Once the strain values are retrieved from
equation (33), the individual actuator lengths for the j-th
floor are computed as

Ly = Sc + €ylo + d(cosbc — 1),
Ly = Sc + €ly + d(cos(O¢c — 120°) — 1), and
Iy =S¢ + €3ly + d(cos(6c — 240°) — 1).

(34)

These equations incorporate the effects of both axial
and bending deformations, ensuring that the actuator
length is correctly determined and applied in equation
(26) to estimate the resultant tip position and
orientation.

Pressure-controlled configuration estimation. Extending
the inverse mapping method from a single OCM to the
entire manipulator, we consider the combined effects of
external forces and moments on the stacked OCMs. The
configuration parameters, including actuator lengths
(1;), can be determined using the inverse function:

C :fTOCM(P; Text)~

Here, 7, represents the total external load, including the
gravity and the externally applied forces.

For a manipulator consisting of multiple extended OCMs
in series, the LUT method is applied iteratively, accounting
for load propagation from the top plate downwards. The
required pressure to maintain a specific configuration can be
calculated as:

(35)

P :fyCM (Texts C)s

where f I)TCM represents the inverse function that estimates
pressure based on external forces and target configurations.
This function provides a pathway for real-time pressure
control to achieve the desired configuration of the
manipulator.

(36)

Experiment setup

Characterization of the origami cylinder module

Experiments were proposed to examine the kinematics of
the constructed OCMs and to validate the accuracy of the
model. Since the linear and the bending kinematics were
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Figure 5. (A) Experimental setup for loading-unloading test using a tensile tester. The input pressure was controlled using a pressure
regulator. (B) Experimental setup for bending experiment, using a pulley system to exert a moment on the origami cylinder. Three

markers attached to the side of the OCM were tracked using a motion capture system. (C) Experimental setup for controlling the origami
manipulator. (D) Circular and triangular trajectories to be tracked by the manipulator with position control. (E) Position control of

random tip position control with a vertical load applied at the tip.

decoupled through the derivation, separated experiments
were performed to measure the axial deformation and the
pure bending of the OCMs.

For axial deformation, the normal force (£.) and the
length of the actuator (/) were measured to characterize
the response under a constant pressure input and an
external load. Figure 5(A) shows the force and the strain
data collected using a tensile tester (34SC-1, Instron),
while the pressure input (P) was controlled by a pressure
regulator (ITV2030-212cl, SMC). The head of the
tensile tester was programmed to move at a rate of
0.01 mm/s, ensuring a quasi-static condition. The
pressure varied from 0 kPa to 30 kPa with an increment
of 2 kPa, resulting in 16 distinct isobaric force-strain
curve profiles. The initial length (/y) of an individual
actuator was set to 40 mm, with the strain spanning
from —60% to 60%, ensuring operational durability
without causing permanent damage to the origami
structure.

The setup for the bending experiment is shown in
Figure 5(B), where a tendon cable was attached at the
tip of the actuator to exert a bending moment. The
actuator entered a bending state when the cable was

pulled for a certain distance from the neutral axis.
Moment-angle curves were obtained while maintaining
the same length of the neutral axis (s). In the absence of
external loads, the pressure within the origami chamber
was adjusted to define the initial length (/) prior to
bending. The actuator varied from the fully compressed
state, i.e., [/ = 20 mm (e = —0.6), to the fully extended
state, that is, / = 80 mm (€ = 0.6), with a 3 mm in-
crement, yielding 21 bending profiles. The range of the
bending angle was experimentally determined to re-
main within the feasible ROM of the actuator. The
bending sequence was video-recorded to track the
markers placed on the actuator, and the curvature and
the bending angle were tracked using a motion capture
system (OptiTrack, NaturalPoint). The error from the
motion capture system and the accumulated propaga-
tion error were summarized in Table 2. Details on the
calibration of the motion capture system are provided in
Supplemental Information—-E. The moment was indi-
rectly calculated using the moment arm length and the
force data from the tensile tester.

The origami cylinder structure exhibited converging
force-displacement curves under repetitive actuation,
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Table 2. Summary of modeling and control results across different experimental scenarios.

Metrics

Result

OCM characterization
Origami manipulator ROM

Trajectory tracking
Position control with the external load

Orientation regulation with dynamic external load

Fp: [er : 7.4% (0.77 N), epnys. : 4.7% (0.48 N)]

Fg: [em : 18.0% (0.014Nm), enys : 5.9% (0.005 Nm)]

ROM (lnax = 157.79, Omax = 0.788)

RMSE(X,)A(): 2.15% (3.45 mm), RMSE(q,q): 2.67% (0.028 rad)

Triangle: [OL: 15.30 mm, CL: 7.22 mm] Circle: [OL: 7.62 mm, CL: 5.54 mm]
Random 10 points: [OL: 14.29 mm, CL: 5.86 mm]

Average rise time = 3.48s, settling time = 7.32s

RMSE(q,q): 3.15% (0.033 rad)

Average rise time: |.21 s, settling time: 2.55s

primarily due to the stiffness degradation from wear
along the crease lines, as reported in a prior study
(Yasuda et al., 2013). Accordingly, the origami cylinder
used for the specimen underwent 400 loading and

unloading cycles to achieve a stable curve behavior. As
shown in Figure 6(A) and (B), both linear and bending
actions produced convergent curves, indicating con-
sistent performance during different tests.
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Figure 6. (A) Measured data of the cyclic test for linear deformation of the OCMs, showing the force-strain curves when no input
pressure was applied. (B) Measured data from the cyclic test for bending deformation, with an initial strain (&) of 0.6. (C) Grid plot
visualizing the 3D relationship of force, pressure, and strain. Experiments were conducted with 16 different pressure levels with an
increment of 2 kPa, within the strain range of —60% to 60%. Solid lines represent the forces estimated by the model, while the filled
surfaces show the measured data. (D) Moment and bending angle curves for 16 different initial strains (&) of the single layer. The initial
strains (&) were adjusted through 16 steps of pressure inputs, consistent with the linear deformation experiments. Solid lines indicate
the moments estimated by the model, while the filled surfaces show the measured data.
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Control task implementation in the soft manipulator

Continuing from the previous sections, several experi-
ments were conducted to evaluate the performance of the
OCM-integrated manipulator, and the experimental
setup is shown in Figure 5(C). To control the manipu-
lator, the three types of sensors were utilized, and three
origami cylinders were independently controlled by
three pressure regulators. Inertial measurement units
(IMU) (ebimu-9dofv5-r3, E2box) determined the ori-
entation of the top moving plate S relative to the fixed
base frame B, and Hall-effect sensors within each
chamber provided estimates of the lengths of the bent
actuators after calibration. Using both the IMU and the
Hall effect sensors, it was possible to measure the ori-
entation of the frame {S} and the length of the backbone
of the manipulator (s.). The detailed hardware setup is
also shown in Supplemental Information—D.
Employing the PCC assumption for the continuum
manipulator allowed us to determine a unique position at the
tip of the frame {S7}, as explored in prior research (Jones and
Walker, 2006). Throughout the experiments, both the po-

sition (?) and the orientation (ny, ny, and ny) of the tip of the
manipulator were systematically measured. The task oper-
ation can also be viewed in Supplemental Video 1.

The following experiments were conducted to evaluate
the performance of the origami manipulator and the accu-
racy of the derived model.

Range of motion test. The first experiment aimed at moni-
toring the centroid position of the frame S, employing
various combinations of pressure inputs to explore the ac-
cessible space of the designed manipulator. Each test iter-
ation followed 16 pressure steps, mirroring the axial
deformation experiments. With the manipulator featur-
ing three DOFs, the total combination was lgf = 4096
points. The estimated positions from the FK (X ) and the

experimentally measured points ()A( ) were compared
using root-mean-square error (RMSE). Also, the ori-
entation error was similarly calculated by comparing the
Euler angles (ny, ny and ny). The actual position and the
orientation of the tip were measured using the IMUs and
the Hall-effect sensors.

Trajectory tracking tasks. The second experiment involved
trajectory tracking, with two time-dependent trajectories of a
triangle and a circle, providing the references for open-loop
control (see Figure 5(D)). When the targeting trajectories
were predefined, the required profiles of each actuator was
obtained using the function, shown in equation (26). If the
targeting time variance of each length is obtained, the input
pressure profiles can be derived using the relation between
the pressure input and the configuration from the equation
(35). For comparison, we also conducted the proportional-
derivative (PD)-control using the embedded sensors.

Position control with external load. The last experiment was
the position control using the kinematic model while the
external load was applied. As shown in Figure 5(E), a 250 g
weight nearly equivalent to the total mass of the manipulator
(W, = 230 g) was attached at the tip of the manipulator
during actuation to check the performance with the payload.
10 random coordinates inside the ROM were selected and
scheduled to move continuously. The input pressure profiles
of the three actuators were designed to make the tip position
of the manipulator to track the selected positions. Given the
objective to verify the accuracy of the programmed model in
reaching the target positions, a settling time of 10 seconds,
enough for entering a steady state, was allowed.

Adaptation to the dynamic loading. To evaluate the force
feedback and the configuration control capabilities of the
origami manipulator, a dynamic loading scenario was tested.
Using the model derived in equation (22) for each OCM
composing the manipulator, the external force was esti-
mated. While estimating the external force, a specific
configuration, such as the tip position or the orientation of
the upper frame {S}, was controlled. The objective of the
experiment was to maintain the predefined configuration as
incremental weights were added. As shown in the setup in
Figure 5(E), the external load was applied at the center of the
frame {S}, and closed-loop control was implemented to
achieve this task.

Measuring the maximum load. The manipulator was also
tested with a vacuum pressure input to test how much weight
it can lift by contracting the OCMs. The results are sum-
marized in Table 3 and provided in Supplemental Video 1.

Various applications

To highlight the versatility and the potential practical ap-
plications of the proposed OCMs, we present example
configurations and their operations.

Origami gripper. The OCMs can be utilized to construct an
adaptive origami-based gripper, as shown in Figure 8(A).
This gripper leverages the flexibility and the compliance of
the OCMs to conform to various shapes and sizes of target
objects. The combination of axial and bending deformation
allows the gripper to handle delicate objects while main-
taining enough stiffness to apply the grasping forces. Such a
system has potential applications in areas that require del-
icate manipulation, such as handling fragile items in un-
structured environments.

Origami continuum robot. The OCMs can also be extended to
form a two-segment continuum robot, as shown in
Figure 8(B). By connecting multiple OCMs in series, the
manipulator is capable of performing complex motions,
such as bending and reaching into constrained spaces. The
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Table 3. Comparative Analysis of Soft Robotic Manipulators.

Volume Payload Pressure Weight  Error
Author (Year) Control Model [mm] ROM [mm, deg] [N] [kPa] [g] [%]
Greer etal. (2017) CL Sensory 38x38x420 400 x 400 x 300 2 10.38 - 5
Hao et al. (2018) CL FK L: 625, R: 75 - 5 250 - 4.09
Zhang et al. (2019) OL FK L: 300, R: 39 Angular: 90 24.56 100 70.2 1.21%
Huang et al. (2022) OL IK 40 x 40 x 200 300 x 300 x 400 0.6 200 - 2.89
Toshimitsu et al. oL PCC - 200 x 200 x 100 1.17 - - 4.23*
(2021)
Robertson et al. oL Geometric L: 45 Linear: 45, Angular: 42.5 2 60 56 -
(2021)
Shen et al. (2021) CL Sensory L: 114, R: 54 Angular: 78 2.3 100 - 3.37%
Zou et al. (2021) CL Sensory L: 800, R: 15 Linear: 800, Angular: 2 103 - -
120
Liu et al. (2022) oL PCC L: 2300, R: - - 100 5000 -
100
Zaghloul and Bone CL Sensory L: 101.6, R:  Linear: 76.2 440 185 72 -
(2023) 50.8
Fan et al. (2024) CL Sensory L: 60 40 x 40 x 40 2000 80 - 5
Mak et al. (2024) oL - L: 97 Angular: 94.7 25.4 140 43 -
Ku et a. (2024) CL FK, IK L: 234.5, R:  Linear: 102, Angular: 20 80 1100 1.07*
80 70.4
Zhang et al. (2024) OL FK, IK L: 430.7 - 0.302 125 355.2 7.8
This work (OCM) CL FK, IK L: I55, R: 160 x 160 x 80, Angular: 10 40 238 2.15%
525 60.4

Cited Papers: (Greer etal., 2017, Hao et al., 2018, Zhang et al., 2019, Huang et al., 2022, Toshimitsu et al., 2021, Robertson et al., 2021, Zou et al., 2021,
Shen etal., 2021, Liu etal., 2022, Zaghloul and Bone, 2023, Fan et al., 2024, Mak et al., 2024, Ku et a., 2024, Zhang et al., 2024), The position errors marked
with * are the errors calculated using the methods we defined in equation (41).

robot can also be augmented with an end effector, such as a
gripper for object manipulation, making it suitable for ap-
plications in inspection, exploration, or soft robotic navi-
gation in unstructured environments. The derivation of the
kinematics of this two-segment robot is similar to the
process described in the manipulator model in the Model of
the Origami Manipulator section, but it additionally ac-
counts for the interaction force and moment from the
neighboring segment. The formulation is summarized in
Supplemental Information—F. In addition, the demonstration
of these systems, along with task execution and perfor-
mance, is presented in the Results section and the
Supplemental Video 2.

Results

Validation of the OCM kinematics model

The experiments were designed to validate the models
derived by equations (9) and (21). Initially, observations of
linear and bending deformations were made without pres-
sure input, as shown in Figure 6(A) and (B). These figures
show characterization curves derived directly from the raw
data. In Figure 6(A), the axial force value F, is plotted
against the calculated strain € of the OCM, with the strain
range conservatively set to € € [—0.6, 0.6] to avoid extreme

deformation or damage. This setting resulted in a noticeable
hysteresis error between the loading and the unloading
curves, attributed to the hyperelastic nature of the origami
cylinder. The hysteresis error, defined as the percentage
difference between the loading (F") and the unloading
forces (F) relative to the maximum force observed, is given
by

Ff—F;

e [

ax(F) (%)-

G37)

To align with the modeling equations, the mean curves
from both loading (M )and unloading (M) data for force
and moment was determined as

— FI+F;
F = %,
(38)
— MT+M .
and M = ————, respectively.

In the bending experiment, the range of the bending angle
was influenced by the initial strain of the cylinder, in line
with equation (13). For example, Figure 6(B) demonstrates a
bending range up to 1.5 radians, identified as the limit to
avoid damage. The extended characterization curves for the
linear deformation are shown in Figure 6(C). As the input
pressure level was changed, multiple characterization curves
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were obtained. All points corresponding to a specific axial
force (F)), strain (€), and pressure (P) are plotted. The esti-
mation values using equation (9) are also overlaid on the
measured data to highlight the discrepancies. Since the actual
experiments were conducted with discrete pressure values, the
data points are visualized in a color-filled grid to indicate this,
although the model represented by equation (9) could be
plotted as a continuous surface. The force was estimated at
each point, denoted as F,, and is shown with a gradient color in
Figure 6(C). The force estimation error was calculated as

ﬁ‘zin

x 100 (%), (39)

ep =
z

which showed an error of 7.4% overall, 0.77 N in force.
The error tends to increase at higher pressures above
20 kPa, where the error rate was 13.7% in the worst case. In
addition, the average hysteresis error was 4.7% in the axial
force.

For the bending case, the extended curves measured by
changing the initial strain values are shown in Figure 6(D).
A notable point is that the feasible bending range was
determined by the initial strain; the larger the strain, the
wider the range of bending angles possible. This observation
aligns with the modeling, which sets geometric constraints
based on the initial strain €,. Hence, it can be concluded that
the initial strain before bending can serve as an indicator of
the allowable bending range. The errors related to the
moment were calculated in the same manner as in the axial
case. The average moment estimation error was 18%,
equivalent to 0.014 Nm in moment. Furthermore, the av-
erage hysteresis error was 5.9%. The errors tended to in-
crease with larger initial strains, where a wider ROM was
observed for the bending angle.

Task implementation results

The proposed manipulator in this study has three DOFs and
was actuated using all possible combinations of pressure
inputs. These results were compared with analytic esti-
mations using equations (26) and (35). Initially, the
reachable space of the manipulator was tested, as shown in
Figure 7(A). The position and the orientation errors be-
tween the measured data and the estimations were calcu-
lated for each combination of pressure inputs (P; ~ P3).
The manipulator operated within the expect_e)d ROM, with
an average RMSE for the position between X and X ofless
than 8.2 mm. However, several outlier points were ob-
served at high-pressure inputs, with the maximum error of
24.5 mm.

To better represent the position error relative to the
overall workspace, the position error was also normalized
using the ROM-based percentage error. The ROM-based
error was calculated using

Inar =\ 02 + 6, + &2,

where d,, ,, and J, represent the total workspace ranges in
each axis. The position error is then normalized as

(40)

(41)
max

where |)_() —)A(| represents the absolute positional error.
This normalized error gives a clearer indication of the
manipulator’s performance relative to its workspace.
The average RMSEs for the orientation errors were
replaced with quaternion-based errors for improved
accuracy. The quaternion error was calculated using

e, = 2 - arccos(|qm - gel), 42)

where ¢, and ¢. are the quaternions representing the
measured and the estimated orientations, and - denotes
the dot product. This method provides a more holistic
measurement of the orientation error compared to the
separate analyses of ny, ny and ny. In the same way, the
normalized quaternion error was calculated by dividing
the error by the maximum bending angle 0,,.:
%

eyn = ——x100 (%).

amax (43)

Here, regions with extreme deformations caused an
increase in the overall average position estimation error. To
better assess precision in moderate deformation regions,
the reduced ROM was set as x-y coordinates in —50 ~
50 mm, and the z-coordinate ranged from 70 ~ 140 mm.
The errors of all the experiments are summarized in
Table 2.

In the trajectory tracking tasks, two trajectories on an
x-y plane with a constant z coordinate were provided as
references, included witlgn the measured ROM. The
reference trajectories T(X ) were defined as position
functions over time. The position error was calculated

between the model estimation T(Y) and the measured

~

data T(X) at the corresponding times. When estimating
the positions using the model, the pressure input for
each OCM was inversely calculated using equation (35),
assuming the target trajectories were given under zero
external load. This control strategy, using exclusively
the model, is considered as open-loop control (OL) and
shown in the results Figure 7(B). Alongside model
validation in the open-loop control, the closed-loop
control performance using the attached IMUs and the
Hall-effect sensors was also evaluated. In this case,
triangular and circular trajectories were selected. For
the triangular trajectory, the average RMSE position
errors for the open-loop and the closed-loop controls
were 15.30 mm and 7.22 mm, respectively. For the
circular trajectory, RMSE errors were 7.62 mm and
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Figure 7. (A) Workspace analysis with all combinations of pressure inputs, comparing the model predictions with the actual
measurements. (B) Result of triangular trajectory tracking conducted on az = —100 mm plane. (C) Result of circular trajectory tracking

control performed on az= —100 mm plane. (D) z-axis positions measured during both tracking tasks, comparing the model-based open-
loop (OL) control with the closed-loop (CL) control that uses the embedded IMU and the Hall-effect sensors. (E) 10 target points with

random selections in red circles and the actual trajectories of the manipulator’s tip. 10 seconds were allowed to reach each goal
position, allowing the entire task completion time of 100 seconds. (F) Position control results in three axes, demonstrating the

manipulator’s performance in reaching the targets. (G) Experimental setup for position holding as the load increased over time. The
manipulator maintained the target angle q throughout the experiment while the load increased from 0.75 N to 1.80 N over 25 seconds.

(H) Pressure input profile as the external load increased. (I) Result of the quaternion angle during the task maintained by the manipulator

around the target value.
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5.54 mm, respectively. The results of both tasks are
plotted in Figure 7(B)—(D). For both trajectories, the
open-loop control required 10 seconds per cycle to
complete the tracking tasks, as the controller utilized the
programmed model, thus spending the same amount of
time in all trials. However, in the closed-loop control,
due to the PD control of the error, the time varied in each
trial but typically converged within approximately
5 s and 10 s for the triangular and the circular trajec-
tories, respectively.

In the position control task with an external load, the
manipulator successfully moved to 10 randomly se-
lected target points, even with external loads applied
during operation. The points and recorded trajectories
measured from the manipulator are shown in
Figure 7(E), and the error for each coordinate is plotted
in Figure 7(F). Over the sufficient time for task im-
plementation of 10 s at each target point, the position
errors were measured as 5.6 mm, 4.7 mm, and 7.3 mm in
the x, y, and z directions, respectively, with an average
error of 5.86 mm in the 3D space. Additionally, the rise
time and the settling times were measured at each target
point to assess the performance, averaging 3.4 s and
7.3 s, respectively. When using the prediction model
(open-loop), the errors were similar to those from the
trajectory tracking test, with an average distance error of
14.29 mm.

In the force control task, where the manipulator main-
tained its position as external loads were gradually in-
creased, an error of 3.15% was observed in regulating the
orientation (g), corresponding to 0.033 rad. The dynamic
performance was better than in the previous position control
tasks, with average rise and settling times of 1.21 s and
2.55 s, respectively.

Applications

The demonstration results of the continuum robot are
shown in Figure 8(E) and (F). Supplemental Video 2
also presents the task execution of the origami gripper
and the continuum robot in action, picking up a target
object at a predefined position. The task required control
of both the orientation and the position of the end-
effector to avoid collision with the object before po-
sitioning the gripper for stable gripping. The reaching
process was divided into five continuous steps, grad-
ually approaching the target object. Once the object was
reached, the gripper was actuated to grasp it.

Six extended OCMs were used, with the backbone
lengths tracked by the Hall-effect sensors, while two IMUs
in each trunk measured the orientations. The predefined
positions and orientations for each step were set before the
task and controlled using a PD control loop, as introduced in
Figure 4(C). Figure 8(E) shows the position tracking results
in the x, y, and z coordinates, and Figure 8(F) displays the

measured orientation during the tasks. The continuum robot
successfully reached and grasped the target object within
25 s.

Discussion

The experimental results verify the feasibility and the ef-
fectiveness of the proposed soft continuum manipulator,
which leverages OCMs with proprioceptive functionality.
Experiments on the linear and the bending deformation
modes of the OCM confirmed the accuracy of the model.
Moreover, integrating proprioceptive OCMs into the soft
continuum manipulator demonstrated the potential for
practical applications.

The validation of the OCM model showed low errors in
estimating both force and moment, indicating the possibility
of practical implementation of the Yoshimura pattern-based
origami actuator in real-world settings. The errors however
rapidly increased under extreme conditions, such as at high
pressures or strains, and hysteresis was also observed in both
force and moment measurements, which may have been
caused by several reasons, such as variations in the material
properties and manufacturing tolerances from manual fab-
rication. While the model simplifies the complexity in the
analysis that typically uses FEA, it may not capture various
nonlinear behaviors. Nevertheless, within a defined ROM
for both OCMs and the manipulator, the model proved to be
useful.

When assembled into a larger system, the OCMs dem-
onstrated the capability of reaching diverse positions and
making different orientations with precision. Although the
average errors within the ROM tasks were modest, the
outliers at high pressure inputs highlighted the kinematic
nonlinearities, particularly over-actuation at extreme pres-
sure levels, which affected the accuracy of the prediction
model and sometimes violated the PCC assumptions. The
trajectory tracking task showed the efficacy of the model in
open-loop control, and the accuracy was even increased with
closed-loop control, suggesting its potential to improve the
performance in practical implementations. Notably, in tasks
involving payloads, the manipulator was able to maintain
the high accuracy, with decreased errors and relatively short
settling times.

Table 3 compares our proposed origami-based soft
pneumatic manipulator system with state-of-the-art systems.
Our approach introduces several distinct advantages derived
from our novel modeling and design strategies. Unlike
existing systems that utilize origami cylinders primarily as
structural shells with separate actuators, such as pneumatic
muscles or SMA wires, our Origami Cylinder Modules
(OCMs) serve simultaneously as the structural framework
and the pneumatic actuator chambers. This integrated design
significantly reduces complexity and weight, enhancing the
manipulator’s overall agility and responsiveness.
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Figure 8. (A) Soft gripper prototype composed of three bending OCMs. One side of each OCM is fixed to realize to the module’s
bending motion when pressurized, with all three OCMs oriented toward the center of the gripper. (B) Extended manipulator segments

as a continuum robot with the gripper installed at the end. IMUs are installed in each trunk segment, and a Hall-effect sensor is embedded
in each OCM. (C) Configuration estimation of two trunks using embedded proprioceptive sensors. (D) Object picking task using the
continuum robot using the open-loop control. A total of five different steps were planned to reach the predefined object location and
pick up and place the object in the end. (E) Position control result of the task implemented by the continuum robot (top) and five input
commands during the task (bottom). (F) Orientation changes following the five input steps, measured by the IMU sensor on the first trunk.

Our simplified kinematic model explicitly incorporates
internal pressure inputs, volumetric deformation, and virtual
work, extending conventional strain-energy-based geo-
metric approaches. By establishing explicit mapping
functions based on extensive experimental data, our model
enables efficient real-time forward and inverse kinematics
computations. This modeling strategy provides scalability,
seamlessly transitioning from single OCMs to modular
manipulators and multi-segment continuum robots without
requiring  additional =~ assumptions  or  rigid-link
approximations.

Additionally, the integration of proprioceptive sensing
mechanisms, specifically Hall-effect sensors for length
measurement and IMUs for orientation, significantly en-
hances real-time closed-loop control capabilities. This
embedded sensing strategy allows accurate manipulation
and robust performance in complex operational tasks, such
as precise trajectory tracking and dynamic payload han-
dling, without sacrificing system simplicity.

Overall, this combination of an integrated pneumatic-
actuated origami design, a scalable and simplified kinematic
modeling approach, and embedded proprioceptive feedback
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positions our system uniquely among soft pneumatic ma-
nipulators, offering substantial improvements in control
efficiency, payload capacity relative to self-weight, and
adaptability to complex manipulation tasks.

Future work could include the exploration of the
dynamic characteristics of the system, leveraging the
numerically derived models and equations for differ-
entiation. Following the approaches in previous studies
(Kidambi and Wang 2020; Zhang et al., 2023), incor-
porating derivatives of pressure-to-configuration rela-
tionships could yield a dynamic model that includes the
velocity and acceleration terms, offering a compre-
hensive analysis of the Yoshimura cylinder used as a
pneumatic actuator.

Another area of future work will be incorporation of
tactile or force sensors into the actuation modules for
detecting contacts from the surroundings. Different
sensing mechanisms, such as microfluidic (Park et al.,
2012; Yang et al., 2020), capacitive (Jung et al., 2024;
Weichart et al., 2021), or fiber-optic sensors (Yi et al.,
2023), can be employed, combined with machine
learning algorithms. In this way, the robotic arm will be
more interactive with the environments including hu-
mans (Kim et al. 2023) or robust in rejecting distur-
bances (Kim et al. 2023).

Conclusion

This study introduced a soft continuum manipulator based
on modular origami cylinder modules, using a kinematic
model rooted in the Yoshimura origami pattern. The vali-
dated model effectively predicted the linear and the bending
deformations under pneumatic actuation, demonstrating its
practicality in real-world applications. While errors in-
creased in extreme conditions, the system showed a reliable
performance within its normal range, with low errors in
estimating both force and moment.

The lightweight origami structure enabled the manipulator
to carry high loads relative to its weight, allowing for faster
movement and a large ROM. Embedded proprioceptive sen-
sors enhanced control accuracy, especially in closed-loop
control tasks. Comparison with state-of-the-art soft robots
demonstrated the competitive performance in load capacity,
simplicity and precision of the prediction model.

While challenges remain, particularly under extreme
conditions, this work bridges theoretical modeling and
practical applications in soft robotics, laying the foundation
for future research into dynamic modeling and further
origami-inspired designs.
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