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Images for Physics-Based Simulation
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Abstract— This paper introduces a simulation framework
for the vision-based tactile (ViTac) sensor through accurate
modeling of contact deformation and pressure. A finite element
model replicates a ViTac sensor to simulate contact events
and generate high-resolution surface deformation and force.
These simulated contacts are translated into tactile RGB im-
ages using data-driven mapping, enabling large-scale synthetic
data generation without requiring real measurements. The
framework also infers depth and contact force from real RGB
images using simulated contact as supervision, reversely. The
resulting bidirectional mapping connects simulated and real
tactile domains, supporting both synthetic data generation and
the addition of physical annotations to existing datasets. This
framework is applicable to learning-based tactile perception
tasks where high-quality paired data are limited or difficult to
collect.

I. INTRODUCTION

Recent advances in large-scale datasets have greatly im-
proved robotic policy learning and enabled larger tasks [1]—
[3]. In addition to diverse state observations, the rich force
feedback from the end effector is crucial for precision and
robustness in contact-rich manipulation [4], [5], especially
for humanoid platforms requiring safe, adaptive physical
interaction.

In-hand manipulation, where a gripper makes multiple si-
multaneous contacts, requires high-resolution spatially dense
tactile sensing to accurately capture both contact forces
and geometry [6]-[8]. Conventional proprioceptive sensors,
such as joint torque encoders, provide only coarse contact
information [9], [10] and often fail to capture local contact
points, shapes, or forces.

Given the limitations of proprioceptive sensing, recent ad-
vances have focused on the development of vision-based tac-
tile (ViTac) sensors [11]-[13], which embed internal cameras
to capture deformations of an elastic surface. These sensors
have demonstrated superior capabilities in interpreting visual
signals to extract physically meaningful contact information,
including contact location [14], surface geometry [15], and
force distribution [16]. As a result, they enable fine-grained
control in manipulation tasks such as object reorientation [§]
and slip detection [17].

Vision-based tactile (ViTac) sensor has improved down-
stream tasks such as grasp outcome prediction [18], material
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recognition [19], force estimation [20], and contact-rich ma-
nipulation via end-to-end reinforcement learning [21], [22].
These advances rely on large volumes of high-quality tactile
data [16], [19], [23], motivating simulation environments that
can reproduce high-fidelity ViTac outputs for scalable data
augmentation and policy training [24].

A variety of simulation-based approaches have been de-
veloped to meet this demand. These include realistic tactile
image generation [25]-[27], physics-informed perception [8],
[16], [28], rendering in physics-based simulators [23], [29],
and learning-based tactile perception [30], [31]. While these
methods have advanced tactile rendering and representation
learning, most cannot produce physically grounded tactile
data that jointly capture force distribution, contact shape,
and surface deformation. Finite element methods (FEM) can
model these interactions [32], [33], but are often too com-
putationally expensive for real-time control or accelerated
reinforcement learning. Moreover, existing work typically
focuses on perception rather than generation, and only a
few methods render realistic RGB outputs that closely match
actual sensor responses [23], [25], [34], [35].

This study proposes a simulation rendering framework
based on an optimized FEM implementation to enable
physically accurate and high-resolution modeling of ViTac
sensors. The simulator computes contact-induced surface
deformation and force distribution, producing large-scale
data sets with physically grounded annotations. A calibra-
tion procedure aligns simulated responses with real sensor
measurements across various contact shapes and loading
conditions.

Using this calibrated model, we construct paired data sets
by matching simulated nodal outputs with real RGB images
from mirrored indentation experiments. These data train two
bidirectional networks: (i) a perception model that estimates
deformation and force from RGB input, and (ii) a rendering
model that synthesizes realistic tactile images from physical-
state representations. Together, they enable interpretable an-
notation of real sensor data, physics-consistent RGB gener-
ation from simulation, and strong generalization to unseen
contact types, supporting both scalable data augmentation
and simulation-based learning.

II. SIMULATION AND LEARNING FRAMEWORK

Fig. 1 shows the proposed framework, which integrates
FEM-based simulation with bidirectional mapping between
real and simulated tactile signals. The DIGIT sensor [6]
was calibrated in SOFA [36] using minimal real-world in-
dentation data to replicate the hyperelastic behavior of its
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Fig. 1.

Structure of the bidirectional framework linking real and simulated outputs from vision-based tactile sensors. A mirrored setup was used to

collect paired data between physical indentation and simulation (gray region). Using this dataset, a perception model fy was trained to produce physically
grounded annotations from RGB input, while a rendering model fg' was trained to render realistic RGB images from simulated physical data.

silicone gel tip. The sensor model employs a fine-resolution
tetrahedral mesh to capture nodal displacements and contact
forces at the spatial resolution of the physical device. To
enable fast execution, model order reduction (MOR) [37],
[38] was applied, achieving significant acceleration without
loss of physical accuracy.

Identical contact conditions were reproduced in both the
physical setup and the simulation to construct a paired
dataset of real RGB images (/r) and simulated physical
annotations, including 3D surface deformation (U) and force
distribution (F'). This dataset was used to train two networks:
a perception model ( fy) that infers physically grounded states
from Ig, and a rendering model ( f; ) that generates realistic
RGB tactile images from simulated contact states. Together,
these components enable real-time, bidirectional translation
between physical and visual tactile domains, supporting
physics-informed annotation and high-fidelity tactile image
synthesis in accelerated simulation environments.

A. Sensor Modeling

Accurate FEM simulation of a ViTac sensor required
precise modeling of both the deformable gel tip and its
deformation under contact. Calibration was performed by
collecting force—displacement measurements under quasi-
static loading using a universal testing machine.

The 3D CAD models of the sensor and indenter were
tetrahedralized to generate simulation meshes. The initial
contact surface region was refined to improve numerical
stability and reduce surface noise, and iterative Laplacian
smoothing [39] was applied to the mesh vertices prior to

simulation. The final remeshed geometry was used for FEM
simulation.

To enable real-time execution without compromising phys-
ical accuracy, model order reduction (MOR) was applied
using proper orthogonal decomposition (POD) [38]. Let
u,(t) € RV*! denote the full-order normal displacement at
time ¢, where N is the total number of FEM nodes, governed
by:

K(u,) = f, o))
where K is the stiffness operator and f is the external force
vector. A sequence of snapshot vectors uz,0,.. Uz T-1
was assembled into:
NxT
U=[u,p,...,u,7_1] € RV, (2

Using singular value decomposition (SVD), the snapshot
matrix was factorized as:

U=®3V', (3)

and the top-r basis vectors in ® € RV*" were retained to
form the reduced subspace. The displacement field was then
approximated as:

u; ~ ®q, “4)

where q € R” is the reduced coordinate vector. Substituting

into the original system yielded the reduced-order form:
P KPq=d'f. (5)

This reduced system preserved dominant deformation behav-
ior while significantly reducing computational cost.
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deformation (U) and corresponding force distribution (F') for model calibration. From the simulated nodal displacement (U), the contact location (p),
contact patch (A), and force map (F') are extracted and compared with the real sensor measurements.

As shown in Fig. 2, a custom SOFA simulation scene was
constructed to reproduce the contact-induced deformation
of a vision-based tactile sensor using the reduced FEM
model. The sensor and indenter were represented as separate
tetrahedral meshes, and the contact region of the sensor
surface was remeshed to enhance resolution and stability.
The reduced mesh (M (’“)) was derived via POD, enabling
efficient simulation while preserving dominant deformation
modes. During simulation, the indenter followed a perpendic-
ular trajectory toward the sensor and the contact was resolved
using collision detection and friction response. The resulting
nodal displacement field (U) was used to extract contact
location, contact patch (A), and force distribution (F(U))
to calibrate against real data.

B. Calibration Metrics

Calibration was performed by reproducing identical con-
tact conditions with the physical DIGIT sensor and the FEM
simulation, enabling a direct comparison of the geometric
and physical responses.

1) Nodal Position Error: The FEM nodal positions were
compared with the real measurements obtained from inden-
tation experiments. The RMSE nodal position was computed
as the mean Euclidean distance in millimeters between the
corresponding node coordinates.

2) Contact Patch Geometry: The similarity of the contact
shape was quantified by using the intersection over union
(IoU) between binary contact masks as shown in Fig. 2. The
real mask was obtained by subtracting the background and
thresholding of I, and the simulated mask by thresholding
the vertical displacement 06U, at the surface nodes. The con-
tact centroid error was computed as the Euclidean distance
between the centroids of the real and simulated masks, and
the rotation error was computed as the angular difference
between their normal z-axis.
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3) Force-Depth Correspondence: The consistency of
global contact force was evaluated from the force displace-
ment curves measured in indentation trials. In simulation,
the z-direction nodal contact force was computed from the
calibrated Neo-Hookean material model:

_ Ky K
W_5(11—3)+§(J—1)2, (6)
o(U) = %(B — 1)+ #(J — 1)I and %
fEU) =[o(U)-ny] Ay, (3)

where A; is the lumped nodal surface area, n; the outward
surface normal, and i, ~ the shear and bulk moduli derived
from E and v. The reported metric is the RMSE between
the global contact forces simulated and measured.

III. BIDIRECTIONAL NETWORKS
A. Perception Network: Visual-to-Physical Displacement

The perception model (Fig. 3-(a)) estimates a dense physi-
cal displacement field from an input RGB tactile observation.
First, a background image (I%) is subtracted from each tactile
frame to remove variations in sensor-specific appearance, as
the data set was collected from multiple DIGIT sensors. The
resulting image A € R3*240x320 jg aligned with the fixed
ROI of the sensor. For contact evaluation, a binary contact
mask was derived from the FEM simulation by thresholding
the vertical displacement of the nodes (dU.) at the sensor
surface. The contact mask provided a precise definition of
the contact region.

The network architecture is a compact UNet en-
coder—decoder with three downsampling stages and sym-
metric upsampling via skip connections, using ReL.U ac-
tivations and batch normalization. The spatial resolution
is progressively reduced during encoding to decrease the
number of parameters and increase the receptive field, then
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Fig. 3. Mapping between physical states and RGB image representations. (a) Perception model (fy): given an input RGB image (I g), the network predicts
a nodal deformation field (U), consisting of 3D displacement at each node. The output nodal deformation can be projected to form a spatial force map F
using the sensor model. (b) Rendering model ( fg' ): given a physical state input Ug € RY X3, the network reconstructs a synthetic RGB image ATg that

mimics the real sensor image.

restored in the decoder to produce a dense output. The model
predicts a three-channel physical field F = [Pa, Py, dz]s
where p, and p, are normalized sensor coordinates and
U. is the normalized out-of-plane displacement. The normal
depth deformation was included in loss function using mean
squared error (MSE):

&)

while the p, and p, coordinate acted as an auxiliary struc-
tural context. The target displacement U, is obtained by
rasterizing the FEM nodal outputs onto the image grid
using calibrated sensor bounds. Evaluation metrics for the
perception network included contact IoU, contact centroid
error, and contact rotation error.

Edisp = MSE(ﬁza Uz)a

B. Rendering Network: Physical-to-Visual Reconstruction

The rendering model (Fig. 3-(b)) generates an RGB delta
image ATg from a multichannel physical input that in-
cludes displacement and 19 positional Fourier features. The
architecture is also a lightweight UNet with two encoder
stages, a bottleneck, and a symmetric decoder, using GELU
activations and group normalization. Training uses a mask-
weighted L1 reconstruction loss:

L=2L+ MLy + AL, (10)

with contact mask I derived from simulated §U,. Render-
ing quality is evaluated with: (i) L1, the mean absolute pixel
difference between predicted and ground truth images; (ii)
Peak Signal-to-Noise Ratio (PSNR), computed as

MAX

PSNR = 2010 — ],
£10 ( MSE)

where MAX is the intensity range of the image and MSE is
the mean squared pixel error used internally for the PSNR
calculation; and (iii) Structural Similarity Index Measure
(SSIM), which compares luminance, contrast and structural
similarity to the ground truth image. The predicted delta
image ATg can be converted to the final tactile image Ir
by adding the sensor-specific background image I%. The
hyperparameters of both networks are summarized in Table I.

TABLE I
HYPERPARAMETERS OF THE TWO NETWORKS.

Component Perception fy Rendering fg'

Input Alr Us [x,y, d7]

Output Us [z,y, dz] Alg

Architecture UNet UNet

Activations / Norm ReLU + BatchNorm GELU + GroupNorm

Loss Function MSE (dz) ar L1 + a2(1l —
SSIM)

Optimizer Adam (le—5) Adam (le—5)

IV. EXPERIMENTS
A. Calibration

As shown in Fig. 4-(a), a planar stage was used to precisely
align the indenter with the region of interest (ROI) on
the sensor for force—displacement measurements. Indentation
tests were performed at 100 uniformly distributed locations
using a universal testing machine (34SC, Instron) in quasi-
static mode, with a constant indentation speed of 0.01 mm/s,
a maximum depth of 1 mm, force resolution of 10 mN,
and displacement accuracy of 20 pum. At each location,
a complete indentation cycle was recorded to obtain a
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force—displacement curve. Preliminary speed tests indicated
that indentation speeds exceeding 0.5 mm/s introduced vis-
coelastic and dynamic effects; all calibration experiments
were therefore conducted below this threshold.

B. Data Acquisition

Real-world indentation tests were conducted with 10 dif-
ferent indenter geometries as shown in Fig. 4-(b). For each
contact, indentation was performed in 100 depth increments
of 10 pm, up to a maximum depth of 1 mm. The maximum
depth was chosen to ensure the contact force remained within
the safe operating limit of the sensor, up to 15 N. To increase
dataset diversity, asymmetric indenters (e.g., maze, pyramid,
square) were rotated between trials to produce varied con-
tact patterns, while symmetric indenters (e.g., point, donut,
sphere) were varied only in contact position, as shown in
Fig. 4-(b). To account for sensor-to-sensor variations, the
experiments were performed using four different DIGIT
sensors. In total, 15,000 real contact images were acquired
for training. Corresponding FEM simulations were run under
identical contact positions and orientations, yielding a paired
dataset in which each real RGB image is matched with
a physically annotated label containing nodal deformation
and contact pressure. A total of 15 percent of the data was
separated solely for the validation test used for inference.

V. RESULTS
A. Calibration precision

To validate the realism and fidelity of the FEM simulation
of the DIGIT sensor, calibration experiments were conducted
by reproducing identical indentation sequences in both the
physical and simulated setups. The calibration results in
Table II report Force RMSE and Nodal position error across
the entire ROI for complete indentation experiments.

The global force error between the simulated and mea-
sured force—displacement curves was 0.20 N on average,
with a maximum deviation not exceeding 0.30 N. The errors
were smallest in the central region of the sensor contact area
and increased slightly toward the edges, which is attributed
to the convex geometry of the silicone gel tip. The nodal
position RMSE, computed as the average Euclidean distance
between the simulated and measured nodal coordinates on
the ROIL, was 0.192 mm. All reported values are averaged
over the ten indenter geometries, with the mean and standard
deviation calculated from the set of 100 uniformly distributed
indentation points per indenter. The SOFA-based reduced-
order FEM simulation runs at approximately 30 frame per
second (FPS) on a 32 core 64 thread CPU.

B. Perception Network Validation

The perception network was evaluated on the held-out
validation dataset across all four sensors and ten indenter
geometries. The metrics included both contact location and
orientation errors. The similarity of the contact shape was
quantified using the IoU metric calculated between the real
and simulated contact patches, yielding a mean IoU of
0.85 £ 0.05 across all indenters. The centroid position error
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Fig. 4. (a) Experimental setup using a universal testing machine and ten

different indenter tips to press against the vision-based tactile sensor. The
tips represent a variety of geometric shapes. (b) Contact ROI on the sensor
surface, along with the number of rotated indenter configurations used for
data collection. For asymmetric indenters, rotations were also applied to
collect various contact patch.

TABLE 11
SUMMARY OF RESULTS

Domain Metric Value
FEM Calibration Force RMSE [N]| 0.20 £ 0.030
Nodal position [mm]| 0.192 £ 0.017
Contact IoUT 0.85 + 0.055
. Contact centroid [mm]|  0.458 4 0.078
Network Perception ¢ ot rotation [radll  0.047 -+ 0.014
Surface force [N]] 0.11 4+ 0.037
L1} 13.59 £+ 1.03
Rendering Quality SSIMt 0.971 £+ 0.02
PSNRT 39.13 + 1.81

in the contact was 0.458 +0.078 mm and the rotation error
in the contact shape was 0.047 £ 0.01 rad.

Although the network does not directly measure force, the
predicted nodal displacements can be used with the calibrated
sensor model (Eq. 8) to compute the corresponding contact
forces. Using this approach, the surface force RMSE was
0.11 +0.03 N.

These results show that the perception network can reli-
ably recover both the spatial structure and the physical re-
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Fig. 5. (a) Visual examples of perception network. The network predicted deformation field U and corresponding force distribution for various indenters.
These positions and rotations were not included data in the training. (b) Visual examples of rendering results showing synthetic tactile images I compared
with the real image /i generated from deformation inputs Ug for various indenter geometries.

sponse of real-world contacts from visual tactile input. Fig. 5-
(a) illustrates example predictions, showing the reconstructed
nodal displacement fields and corresponding force distribu-
tion for unseen dataset. The model reproduces both global
contact geometry and the localized pressure distribution, as
well as the accurate force estimation. The perception model
processes over 1,000 images per second on the RTX 5090
(32G VRAM), allowing rapid batch inference or real-time
deployment in high-throughput tactile perception pipelines.

C. Rendering Network Validation

The rendering network was evaluated on the validation
data set using paired FEM-RGB data. Given multi-channel
physical inputs from the FEM simulation, the network syn-
thesized delta RGB images (ATg) of the contact imprint.

Quantitative evaluation was performed using three stan-
dard image similarity metrics. The mean absolute error
(L1) between the predicted and ground-truth images was
13.59£1.03 (pixel intensity scale 0-255). The SSIM reached
0.971 £ 0.02, indicating very high similarity in luminance,
contrast, and structural features. The PSNR was 39.13 +
1.81 dB, reflecting low overall reconstruction error and high
perceptual quality.

Fig. 5-(b) presents representative examples of rendered
images alongside their ground truth, showing that the net-
work accurately reproduces both the global contact shape and
fine local texture details of the tactile imprint. These results
demonstrate that the rendering network can generate high-
fidelity synthetic tactile images from physically grounded
FEM outputs, enabling realistic visual augmentation for
simulation-based learning. The rendering network achieves
an inference speed of approximately 220 images per second
on the same GPU, supporting fast generation of high-fidelity
tactile images for simulation-based training.

D. Generalization to Unseen Data

Beyond controlled quantitative evaluation, both networks
were tested in scenarios that differed from training conditions
to assess their generalization capabilities (Fig. 6).

1) Perception network on external dataset: The per-
ception model was evaluated on samples from the YCB
object set [40], provided through the TACTO simulation
framework [23]. In this setting, the lighting and shading
conditions differed from those in the training dataset, and
no background image 9 was available for subtraction. As
shown in Fig. 6-(a), despite these differences, the network
successfully segmented the contact region and reconstructed
the corresponding height map of the nodal deformation,
producing plausible 3D surface estimates directly from raw
RGB input.

2) Rendering network on unseen indenters: The rendering
model was tested with complex indenter geometries that
were not present in the training set. These indenters were
created as 3D meshes and simulated in the FEM envi-
ronment, producing nodal deformation fields without any
corresponding real images. As shown in Fig. 6-(b), the
rendering network synthesized realistic delta RGB images for
these novel contact shapes, accurately capturing their global
geometry. Although minor artifacts were visible in certain
fine-scale details, overall shapes were rendered consistently,
demonstrating the potential for generating tactile imagery
from purely virtual contact scenarios.

3) Rendering sensor in Physics-based simulation: As
illustrated in Fig. 7, the rendering network can be seamlessly
integrated into physics-based robotic simulation pipelines.
Given a simulation mesh of the ViTac sensor, local contact
information can be projected onto the nodal grid and passed
through the rendering network to generate realistic DIGIT
sensor images in real time. This capability enables scalable
augmentation of training data for contact-rich manipulation,
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Fig. 6. Applications of the learned bidirectional model beyond quantitative
evaluation. (a) Perception network inference of surface deformation using
RGB images collected from real-world objects not seen during training. (b)
Rendering results from text-based indentation experiments, showing high-
fidelity RGB outputs for various indenter shapes.

Fig. 7.
based simulator. Deployment on a robot arm equipped with dual DIGIT
sensors in environment. The rendering network synthesizes realistic RGB
outputs during dynamic grasping

Rendering based on high-resolution contact data from a physics-

such as in-hand control, tool use or fine assembly tasks. By
preserving the physical grounding of contact geometry and
force distribution, the generated images can be used directly
for training perception or control policies, significantly re-
ducing the need for labor-intensive real-world data collection.

VI. DISCUSSION

This work presents a bidirectional framework that in-
tegrates a calibrated finite element simulation with UNet-
based networks to reconcile real ViTac measurements with
physics-based simulation. The framework includes a percep-
tion model that regresses to a dense three-dimensional de-
formation field U from high-resolution RGB and a rendering
model that synthesizes realistic tactile images from simulated
physical states. Coupling both directions within one dataset
and an architecture enables large-scale synthetic data gen-
eration and automated physical annotation of unlabeled real
images, creating a closed simulation—reality loop.

The objective of perception is to assess dense deformation
regression, unlike Sim2Surf [41] for surface classification
and GenForce [20] for the estimation of three axes of force.
The closest objective is SimTacLS [28], which reconstructs
skin shape from tactile images, while the present frame-
work emphasizes a calibrated sim-to-real pipeline. On the
simulation side, TACTO [23] and TacSL [31] prioritize
scalability by approximating soft contact with rigid-body or
penalty methods, which do not explicitly resolve nonlinear
elastomer deformation. An FEM-based approach, similar to
DiffTactile [29], captures calibrated hyperelastic behavior
from real data.

The FEM model is calibrated with force—displacement
measurements from a real sensor to produce paired states
that are visually and physically representative, reducing the
gap before learning so that training uses physically grounded
supervision.

From Ug, the contact geometry and forces are derived
and evaluated against the calibrated ground truth. Under the
stated protocol, the results include the 0.458 mm centroid
error, the 0.047 rad rotation error, and the 0.11 N force
RMSE. The mean errors, confidence intervals, coordinate
frames, alignment, and sample counts are documented in the
Github page description. Checkpoints and evaluation scripts
are provided for exact reproduction.

Rendering FEM states into RGB images achieves SSIM
0.971 and PSNR 39.13 on a held-out test set. Inference
reaches 220 FPS on an RTX 5090 with batch size 8 at
native resolution. Because prior work uses different sen-
sors, datasets, and metrics, claims of superiority are lim-
ited to shared evaluations under identical conditions. For
Taxim [25], comparisons use controlled reimplementations
when SSIM or PSNR are unavailable on the present data.

The release materials include data acquisition scripts,
FEM setup and calibration utilities, trained networks, paired
datasets, and evaluation code at https://github.
com/ndolphin-github/DIGIT_simulation.git.
The current FEM assumes quasistatic contact and a fixed
hyperelastic law; rate-dependent effects, sensor transfer with
minimal recalibration, and edge deployment via compression
remain important directions.
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