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Abstract— This paper introduces a simulation framework
for the vision-based tactile (ViTac) sensor through accurate
modeling of contact deformation and pressure. A finite element
model replicates a ViTac sensor to simulate contact events
and generate high-resolution surface deformation and force.
These simulated contacts are translated into tactile RGB im-
ages using data-driven mapping, enabling large-scale synthetic
data generation without requiring real measurements. The
framework also infers depth and contact force from real RGB
images using simulated contact as supervision, reversely. The
resulting bidirectional mapping connects simulated and real
tactile domains, supporting both synthetic data generation and
the addition of physical annotations to existing datasets. This
framework is applicable to learning-based tactile perception
tasks where high-quality paired data are limited or difficult to
collect.

I. INTRODUCTION

Recent advances in large-scale datasets have greatly im-

proved robotic policy learning and enabled larger tasks [1]–

[3]. In addition to diverse state observations, the rich force

feedback from the end effector is crucial for precision and

robustness in contact-rich manipulation [4], [5], especially

for humanoid platforms requiring safe, adaptive physical

interaction.

In-hand manipulation, where a gripper makes multiple si-

multaneous contacts, requires high-resolution spatially dense

tactile sensing to accurately capture both contact forces

and geometry [6]–[8]. Conventional proprioceptive sensors,

such as joint torque encoders, provide only coarse contact

information [9], [10] and often fail to capture local contact

points, shapes, or forces.

Given the limitations of proprioceptive sensing, recent ad-

vances have focused on the development of vision-based tac-

tile (ViTac) sensors [11]–[13], which embed internal cameras

to capture deformations of an elastic surface. These sensors

have demonstrated superior capabilities in interpreting visual

signals to extract physically meaningful contact information,

including contact location [14], surface geometry [15], and

force distribution [16]. As a result, they enable fine-grained

control in manipulation tasks such as object reorientation [8]

and slip detection [17].

Vision-based tactile (ViTac) sensor has improved down-

stream tasks such as grasp outcome prediction [18], material
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recognition [19], force estimation [20], and contact-rich ma-

nipulation via end-to-end reinforcement learning [21], [22].

These advances rely on large volumes of high-quality tactile

data [16], [19], [23], motivating simulation environments that

can reproduce high-fidelity ViTac outputs for scalable data

augmentation and policy training [24].

A variety of simulation-based approaches have been de-

veloped to meet this demand. These include realistic tactile

image generation [25]–[27], physics-informed perception [8],

[16], [28], rendering in physics-based simulators [23], [29],

and learning-based tactile perception [30], [31]. While these

methods have advanced tactile rendering and representation

learning, most cannot produce physically grounded tactile

data that jointly capture force distribution, contact shape,

and surface deformation. Finite element methods (FEM) can

model these interactions [32], [33], but are often too com-

putationally expensive for real-time control or accelerated

reinforcement learning. Moreover, existing work typically

focuses on perception rather than generation, and only a

few methods render realistic RGB outputs that closely match

actual sensor responses [23], [25], [34], [35].

This study proposes a simulation rendering framework

based on an optimized FEM implementation to enable

physically accurate and high-resolution modeling of ViTac

sensors. The simulator computes contact-induced surface

deformation and force distribution, producing large-scale

data sets with physically grounded annotations. A calibra-

tion procedure aligns simulated responses with real sensor

measurements across various contact shapes and loading

conditions.

Using this calibrated model, we construct paired data sets

by matching simulated nodal outputs with real RGB images

from mirrored indentation experiments. These data train two

bidirectional networks: (i) a perception model that estimates

deformation and force from RGB input, and (ii) a rendering

model that synthesizes realistic tactile images from physical-

state representations. Together, they enable interpretable an-

notation of real sensor data, physics-consistent RGB gener-

ation from simulation, and strong generalization to unseen

contact types, supporting both scalable data augmentation

and simulation-based learning.

II. SIMULATION AND LEARNING FRAMEWORK

Fig. 1 shows the proposed framework, which integrates

FEM-based simulation with bidirectional mapping between

real and simulated tactile signals. The DIGIT sensor [6]

was calibrated in SOFA [36] using minimal real-world in-

dentation data to replicate the hyperelastic behavior of its
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Fig. 1. Structure of the bidirectional framework linking real and simulated outputs from vision-based tactile sensors. A mirrored setup was used to
collect paired data between physical indentation and simulation (gray region). Using this dataset, a perception model fθ was trained to produce physically
grounded annotations from RGB input, while a rendering model f+

θ was trained to render realistic RGB images from simulated physical data.

silicone gel tip. The sensor model employs a fine-resolution

tetrahedral mesh to capture nodal displacements and contact

forces at the spatial resolution of the physical device. To

enable fast execution, model order reduction (MOR) [37],

[38] was applied, achieving significant acceleration without

loss of physical accuracy.

Identical contact conditions were reproduced in both the

physical setup and the simulation to construct a paired

dataset of real RGB images (IR) and simulated physical

annotations, including 3D surface deformation (U ) and force

distribution (F ). This dataset was used to train two networks:

a perception model (fθ) that infers physically grounded states

from IR, and a rendering model (f+
θ ) that generates realistic

RGB tactile images from simulated contact states. Together,

these components enable real-time, bidirectional translation

between physical and visual tactile domains, supporting

physics-informed annotation and high-fidelity tactile image

synthesis in accelerated simulation environments.

A. Sensor Modeling

Accurate FEM simulation of a ViTac sensor required

precise modeling of both the deformable gel tip and its

deformation under contact. Calibration was performed by

collecting force–displacement measurements under quasi-

static loading using a universal testing machine.

The 3D CAD models of the sensor and indenter were

tetrahedralized to generate simulation meshes. The initial

contact surface region was refined to improve numerical

stability and reduce surface noise, and iterative Laplacian

smoothing [39] was applied to the mesh vertices prior to

simulation. The final remeshed geometry was used for FEM

simulation.

To enable real-time execution without compromising phys-

ical accuracy, model order reduction (MOR) was applied

using proper orthogonal decomposition (POD) [38]. Let

uz(t) ∈ R
N×1 denote the full-order normal displacement at

time t, where N is the total number of FEM nodes, governed

by:

K(uz) = f , (1)

where K is the stiffness operator and f is the external force

vector. A sequence of snapshot vectors uz, 0, . . . ,uz,T−1

was assembled into:

U = [uz,0, . . . ,uz,T−1] ∈ R
N×T . (2)

Using singular value decomposition (SVD), the snapshot

matrix was factorized as:

U = ΦΣV�, (3)

and the top-r basis vectors in Φ ∈ R
N×r were retained to

form the reduced subspace. The displacement field was then

approximated as:

uz ≈ Φq, (4)

where q ∈ R
r is the reduced coordinate vector. Substituting

into the original system yielded the reduced-order form:

Φ�KΦq = Φ�f . (5)

This reduced system preserved dominant deformation behav-

ior while significantly reducing computational cost.
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Fig. 2. Overview of the FEM model calibration process and evaluation metrics. Simulation in SOFA replicates real-world contact to generate surface
deformation (U ) and corresponding force distribution (F ) for model calibration. From the simulated nodal displacement (U ), the contact location (p),
contact patch (A), and force map (F ) are extracted and compared with the real sensor measurements.

As shown in Fig. 2, a custom SOFA simulation scene was

constructed to reproduce the contact-induced deformation

of a vision-based tactile sensor using the reduced FEM

model. The sensor and indenter were represented as separate

tetrahedral meshes, and the contact region of the sensor

surface was remeshed to enhance resolution and stability.

The reduced mesh (M (k)) was derived via POD, enabling

efficient simulation while preserving dominant deformation

modes. During simulation, the indenter followed a perpendic-

ular trajectory toward the sensor and the contact was resolved

using collision detection and friction response. The resulting

nodal displacement field (U ) was used to extract contact

location, contact patch (A), and force distribution (F (U))
to calibrate against real data.

B. Calibration Metrics

Calibration was performed by reproducing identical con-

tact conditions with the physical DIGIT sensor and the FEM

simulation, enabling a direct comparison of the geometric

and physical responses.

1) Nodal Position Error: The FEM nodal positions were

compared with the real measurements obtained from inden-

tation experiments. The RMSE nodal position was computed

as the mean Euclidean distance in millimeters between the

corresponding node coordinates.

2) Contact Patch Geometry: The similarity of the contact

shape was quantified by using the intersection over union

(IoU) between binary contact masks as shown in Fig. 2. The

real mask was obtained by subtracting the background and

thresholding of IR, and the simulated mask by thresholding

the vertical displacement δUz at the surface nodes. The con-

tact centroid error was computed as the Euclidean distance

between the centroids of the real and simulated masks, and

the rotation error was computed as the angular difference

between their normal z-axis.

3) Force-Depth Correspondence: The consistency of

global contact force was evaluated from the force displace-

ment curves measured in indentation trials. In simulation,

the z-direction nodal contact force was computed from the

calibrated Neo-Hookean material model:

W =
μ

2
(Ī1 − 3) +

κ

2
(J − 1)2, (6)

σ(U) =
μ

J
(B − I) + κ(J − 1)I and (7)

fz
i (U) =

[
σ(U) · ni

]
z
Ai, (8)

where Ai is the lumped nodal surface area, ni the outward

surface normal, and μ, κ the shear and bulk moduli derived

from E and ν. The reported metric is the RMSE between

the global contact forces simulated and measured.

III. BIDIRECTIONAL NETWORKS

A. Perception Network: Visual-to-Physical Displacement

The perception model (Fig. 3-(a)) estimates a dense physi-

cal displacement field from an input RGB tactile observation.

First, a background image (I0R) is subtracted from each tactile

frame to remove variations in sensor-specific appearance, as

the data set was collected from multiple DIGIT sensors. The

resulting image ΔI ∈ R
3×240×320 is aligned with the fixed

ROI of the sensor. For contact evaluation, a binary contact

mask was derived from the FEM simulation by thresholding

the vertical displacement of the nodes (δUz) at the sensor

surface. The contact mask provided a precise definition of

the contact region.

The network architecture is a compact UNet en-

coder–decoder with three downsampling stages and sym-

metric upsampling via skip connections, using ReLU ac-

tivations and batch normalization. The spatial resolution

is progressively reduced during encoding to decrease the

number of parameters and increase the receptive field, then
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Fig. 3. Mapping between physical states and RGB image representations. (a) Perception model (fθ): given an input RGB image (IR), the network predicts
a nodal deformation field (Û ), consisting of 3D displacement at each node. The output nodal deformation can be projected to form a spatial force map F̂
using the sensor model. (b) Rendering model (f+

θ ): given a physical state input US ∈ R
N×3, the network reconstructs a synthetic RGB image ˆΔIR that

mimics the real sensor image.

restored in the decoder to produce a dense output. The model

predicts a three-channel physical field F̂ = [px, py, d̃z],
where px and py are normalized sensor coordinates and

Ũz is the normalized out-of-plane displacement. The normal

depth deformation was included in loss function using mean

squared error (MSE):

Ldisp = MSE
(
Ûz, Uz

)
, (9)

while the px and py coordinate acted as an auxiliary struc-

tural context. The target displacement Uz is obtained by

rasterizing the FEM nodal outputs onto the image grid

using calibrated sensor bounds. Evaluation metrics for the

perception network included contact IoU, contact centroid

error, and contact rotation error.

B. Rendering Network: Physical-to-Visual Reconstruction

The rendering model (Fig. 3-(b)) generates an RGB delta

image Δ̂IS from a multichannel physical input that in-

cludes displacement and 19 positional Fourier features. The

architecture is also a lightweight UNet with two encoder

stages, a bottleneck, and a symmetric decoder, using GELU

activations and group normalization. Training uses a mask-

weighted L1 reconstruction loss:

L = Lc + λbLb + λnLn, (10)

with contact mask IMR derived from simulated δUz . Render-

ing quality is evaluated with: (i) L1, the mean absolute pixel

difference between predicted and ground truth images; (ii)

Peak Signal-to-Noise Ratio (PSNR), computed as

PSNR = 20 log10

(
MAX√
MSE

)
,

where MAX is the intensity range of the image and MSE is

the mean squared pixel error used internally for the PSNR

calculation; and (iii) Structural Similarity Index Measure

(SSIM), which compares luminance, contrast and structural

similarity to the ground truth image. The predicted delta

image ˆΔIR can be converted to the final tactile image ÎR
by adding the sensor-specific background image I0R. The

hyperparameters of both networks are summarized in Table I.

TABLE I

HYPERPARAMETERS OF THE TWO NETWORKS.

Component Perception fθ Rendering f+
θ

Input ΔIR ÛS [x, y, dz]
Output US [x, y, dz] ΔIS
Architecture UNet UNet
Activations / Norm ReLU + BatchNorm GELU + GroupNorm
Loss Function MSE (dz) α1 L1 + α2 (1 −

SSIM)
Optimizer Adam (1e−5) Adam (1e−5)

IV. EXPERIMENTS

A. Calibration

As shown in Fig. 4-(a), a planar stage was used to precisely

align the indenter with the region of interest (ROI) on

the sensor for force–displacement measurements. Indentation

tests were performed at 100 uniformly distributed locations

using a universal testing machine (34SC, Instron) in quasi-

static mode, with a constant indentation speed of 0.01 mm/s,

a maximum depth of 1 mm, force resolution of 10 mN,

and displacement accuracy of 20 μm. At each location,

a complete indentation cycle was recorded to obtain a
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force–displacement curve. Preliminary speed tests indicated

that indentation speeds exceeding 0.5 mm/s introduced vis-

coelastic and dynamic effects; all calibration experiments

were therefore conducted below this threshold.

B. Data Acquisition

Real-world indentation tests were conducted with 10 dif-

ferent indenter geometries as shown in Fig. 4-(b). For each

contact, indentation was performed in 100 depth increments

of 10 μm, up to a maximum depth of 1 mm. The maximum

depth was chosen to ensure the contact force remained within

the safe operating limit of the sensor, up to 15 N. To increase

dataset diversity, asymmetric indenters (e.g., maze, pyramid,

square) were rotated between trials to produce varied con-

tact patterns, while symmetric indenters (e.g., point, donut,

sphere) were varied only in contact position, as shown in

Fig. 4-(b). To account for sensor-to-sensor variations, the

experiments were performed using four different DIGIT

sensors. In total, 15,000 real contact images were acquired

for training. Corresponding FEM simulations were run under

identical contact positions and orientations, yielding a paired

dataset in which each real RGB image is matched with

a physically annotated label containing nodal deformation

and contact pressure. A total of 15 percent of the data was

separated solely for the validation test used for inference.

V. RESULTS

A. Calibration precision

To validate the realism and fidelity of the FEM simulation

of the DIGIT sensor, calibration experiments were conducted

by reproducing identical indentation sequences in both the

physical and simulated setups. The calibration results in

Table II report Force RMSE and Nodal position error across

the entire ROI for complete indentation experiments.

The global force error between the simulated and mea-

sured force–displacement curves was 0.20 N on average,

with a maximum deviation not exceeding 0.30 N. The errors

were smallest in the central region of the sensor contact area

and increased slightly toward the edges, which is attributed

to the convex geometry of the silicone gel tip. The nodal

position RMSE, computed as the average Euclidean distance

between the simulated and measured nodal coordinates on

the ROI, was 0.192 mm. All reported values are averaged

over the ten indenter geometries, with the mean and standard

deviation calculated from the set of 100 uniformly distributed

indentation points per indenter. The SOFA-based reduced-

order FEM simulation runs at approximately 30 frame per

second (FPS) on a 32 core 64 thread CPU.

B. Perception Network Validation

The perception network was evaluated on the held-out

validation dataset across all four sensors and ten indenter

geometries. The metrics included both contact location and

orientation errors. The similarity of the contact shape was

quantified using the IoU metric calculated between the real

and simulated contact patches, yielding a mean IoU of

0.85± 0.05 across all indenters. The centroid position error

(a)

(b)

x [mm]

y
 [
m
m

]

Rotation Count

10000

1250

1250

1250

1250

y
[

]

DIGIT

Load cell

Types

Indenters

Adjustable stage

ROI

Fig. 4. (a) Experimental setup using a universal testing machine and ten
different indenter tips to press against the vision-based tactile sensor. The
tips represent a variety of geometric shapes. (b) Contact ROI on the sensor
surface, along with the number of rotated indenter configurations used for
data collection. For asymmetric indenters, rotations were also applied to
collect various contact patch.

TABLE II

SUMMARY OF RESULTS

Domain Metric Value

FEM Calibration Force RMSE [N]↓ 0.20 ± 0.030
Nodal position [mm]↓ 0.192 ± 0.017

Network Perception

Contact IoU↑ 0.85 ± 0.055
Contact centroid [mm]↓ 0.458 ± 0.078
Contact rotation [rad]↓ 0.047 ± 0.014
Surface force [N]↓ 0.11 ± 0.037

Rendering Quality
L1↓ 13.59 ± 1.03
SSIM↑ 0.971 ± 0.02
PSNR↑ 39.13 ± 1.81

in the contact was 0.458± 0.078 mm and the rotation error

in the contact shape was 0.047± 0.01 rad.

Although the network does not directly measure force, the

predicted nodal displacements can be used with the calibrated

sensor model (Eq. 8) to compute the corresponding contact

forces. Using this approach, the surface force RMSE was

0.11± 0.03 N.

These results show that the perception network can reli-

ably recover both the spatial structure and the physical re-

519
Authorized licensed use limited to: Seoul National University. Downloaded on November 20,2025 at 05:09:44 UTC from IEEE Xplore.  Restrictions apply. 



donut     dots        edge            line               maze

point             sphere      pyramid           square          texture

(a) (b)

donut     dots        edge             line              maze

point             sphere      pyramid           square          texture

Fig. 5. (a) Visual examples of perception network. The network predicted deformation field Û and corresponding force distribution for various indenters.
These positions and rotations were not included data in the training. (b) Visual examples of rendering results showing synthetic tactile images ÎR compared
with the real image IR generated from deformation inputs ÛS for various indenter geometries.

sponse of real-world contacts from visual tactile input. Fig. 5-

(a) illustrates example predictions, showing the reconstructed

nodal displacement fields and corresponding force distribu-

tion for unseen dataset. The model reproduces both global

contact geometry and the localized pressure distribution, as

well as the accurate force estimation. The perception model

processes over 1,000 images per second on the RTX 5090

(32G VRAM), allowing rapid batch inference or real-time

deployment in high-throughput tactile perception pipelines.

C. Rendering Network Validation

The rendering network was evaluated on the validation

data set using paired FEM-RGB data. Given multi-channel

physical inputs from the FEM simulation, the network syn-

thesized delta RGB images ( ˆΔIR) of the contact imprint.

Quantitative evaluation was performed using three stan-

dard image similarity metrics. The mean absolute error

(L1) between the predicted and ground-truth images was

13.59±1.03 (pixel intensity scale 0–255). The SSIM reached

0.971 ± 0.02, indicating very high similarity in luminance,

contrast, and structural features. The PSNR was 39.13 ±
1.81 dB, reflecting low overall reconstruction error and high

perceptual quality.

Fig. 5-(b) presents representative examples of rendered

images alongside their ground truth, showing that the net-

work accurately reproduces both the global contact shape and

fine local texture details of the tactile imprint. These results

demonstrate that the rendering network can generate high-

fidelity synthetic tactile images from physically grounded

FEM outputs, enabling realistic visual augmentation for

simulation-based learning. The rendering network achieves

an inference speed of approximately 220 images per second

on the same GPU, supporting fast generation of high-fidelity

tactile images for simulation-based training.

D. Generalization to Unseen Data

Beyond controlled quantitative evaluation, both networks

were tested in scenarios that differed from training conditions

to assess their generalization capabilities (Fig. 6).

1) Perception network on external dataset: The per-

ception model was evaluated on samples from the YCB

object set [40], provided through the TACTO simulation

framework [23]. In this setting, the lighting and shading

conditions differed from those in the training dataset, and

no background image I0R was available for subtraction. As

shown in Fig. 6-(a), despite these differences, the network

successfully segmented the contact region and reconstructed

the corresponding height map of the nodal deformation,

producing plausible 3D surface estimates directly from raw

RGB input.

2) Rendering network on unseen indenters: The rendering

model was tested with complex indenter geometries that

were not present in the training set. These indenters were

created as 3D meshes and simulated in the FEM envi-

ronment, producing nodal deformation fields without any

corresponding real images. As shown in Fig. 6-(b), the

rendering network synthesized realistic delta RGB images for

these novel contact shapes, accurately capturing their global

geometry. Although minor artifacts were visible in certain

fine-scale details, overall shapes were rendered consistently,

demonstrating the potential for generating tactile imagery

from purely virtual contact scenarios.

3) Rendering sensor in Physics-based simulation: As

illustrated in Fig. 7, the rendering network can be seamlessly

integrated into physics-based robotic simulation pipelines.

Given a simulation mesh of the ViTac sensor, local contact

information can be projected onto the nodal grid and passed

through the rendering network to generate realistic DIGIT

sensor images in real time. This capability enables scalable

augmentation of training data for contact-rich manipulation,
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(a)

(b)

Fig. 6. Applications of the learned bidirectional model beyond quantitative
evaluation. (a) Perception network inference of surface deformation using
RGB images collected from real-world objects not seen during training. (b)
Rendering results from text-based indentation experiments, showing high-
fidelity RGB outputs for various indenter shapes.

Fig. 7. Rendering based on high-resolution contact data from a physics-
based simulator. Deployment on a robot arm equipped with dual DIGIT
sensors in environment. The rendering network synthesizes realistic RGB
outputs during dynamic grasping

such as in-hand control, tool use or fine assembly tasks. By

preserving the physical grounding of contact geometry and

force distribution, the generated images can be used directly

for training perception or control policies, significantly re-

ducing the need for labor-intensive real-world data collection.

VI. DISCUSSION

This work presents a bidirectional framework that in-

tegrates a calibrated finite element simulation with UNet-

based networks to reconcile real ViTac measurements with

physics-based simulation. The framework includes a percep-

tion model that regresses to a dense three-dimensional de-

formation field Û from high-resolution RGB and a rendering

model that synthesizes realistic tactile images from simulated

physical states. Coupling both directions within one dataset

and an architecture enables large-scale synthetic data gen-

eration and automated physical annotation of unlabeled real

images, creating a closed simulation–reality loop.

The objective of perception is to assess dense deformation

regression, unlike Sim2Surf [41] for surface classification

and GenForce [20] for the estimation of three axes of force.

The closest objective is SimTacLS [28], which reconstructs

skin shape from tactile images, while the present frame-

work emphasizes a calibrated sim-to-real pipeline. On the

simulation side, TACTO [23] and TacSL [31] prioritize

scalability by approximating soft contact with rigid-body or

penalty methods, which do not explicitly resolve nonlinear

elastomer deformation. An FEM-based approach, similar to

DiffTactile [29], captures calibrated hyperelastic behavior

from real data.

The FEM model is calibrated with force–displacement

measurements from a real sensor to produce paired states

that are visually and physically representative, reducing the

gap before learning so that training uses physically grounded

supervision.

From ÛS , the contact geometry and forces are derived

and evaluated against the calibrated ground truth. Under the

stated protocol, the results include the 0.458 mm centroid

error, the 0.047 rad rotation error, and the 0.11 N force

RMSE. The mean errors, confidence intervals, coordinate

frames, alignment, and sample counts are documented in the

Github page description. Checkpoints and evaluation scripts

are provided for exact reproduction.

Rendering FEM states into RGB images achieves SSIM

0.971 and PSNR 39.13 on a held-out test set. Inference

reaches 220 FPS on an RTX 5090 with batch size 8 at

native resolution. Because prior work uses different sen-

sors, datasets, and metrics, claims of superiority are lim-

ited to shared evaluations under identical conditions. For

Taxim [25], comparisons use controlled reimplementations

when SSIM or PSNR are unavailable on the present data.

The release materials include data acquisition scripts,

FEM setup and calibration utilities, trained networks, paired

datasets, and evaluation code at https://github.
com/ndolphin-github/DIGIT_simulation.git.

The current FEM assumes quasistatic contact and a fixed

hyperelastic law; rate-dependent effects, sensor transfer with

minimal recalibration, and edge deployment via compression

remain important directions.
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