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1. Introduction

Advances in soft robotics have enabled the development of adapt-
able and compliant systems that interact safely with unstructured
environments.[1–3] Made from flexible, deformable materials, soft
robots excel in tasks requiring delicate manipulation and human–
robot interaction. As the demand for precise control grows for soft
robots, the integration of external sensors and feedback control
has become standard to improve performance and safety.[4–6]

However, relying solely on sensory feedback is often insufficient,
necessitating robust modeling techniques to predict and control
the nonlinear behaviors of soft robotic systems.[7–9]

Typical modeling methods, such as
lumped parameter models,[10] Cosserat rod
theories,[11] and voxelization,[12] often fail to
capture the complex, hyperelastic properties
of soft materials. This limitation highlights
the need for accurate and accessible model-
ing frameworks to harness the potential of
soft robots in applications such as biomedical
devices,[13] human–robot interaction,[14] and
precision manipulation.[15]

Models based on the finite element
method (FEM) are widely used to analyze soft
materials, with tools that provide multiphy-
sics simulation and high-fidelitymodels.[16,17]

Although effective in incorporating material
properties into simulations, FEMmodels are
computationally intensive, making them
unsuitable for dynamic and real-time applica-
tions.[18,19] Their computational complexity
and high resource demands further limit

their practicality for modeling soft robot control.[20,21]

Recent data-driven approaches, such as deep learning[22–24]

and reinforcement learning (RL),[25–28] offer promising alterna-
tives to the learning dynamics of soft robots. RL enables agents to
learn optimal policies through interactions,[29,30] and has been
applied to soft robotics for tasks requiring dynamic control.[31–33]

However, end-to-end methods face challenges, including dam-
age during exploration, susceptibility to noise, and the difficulty
of collecting large datasets due to the mechanical fragility of soft
robots.[13,34] These limitations emphasize the need for risk-free
data acquisition of soft robots to facilitate RL-based control.

Various platforms have been developed in recent years to
address the challenges of modeling and controlling soft robots,
particularly with respect to real-time interaction and physical
realism. Among them, dynamic simulation frameworks, such
as the simulation open framework architecture (SOFA), have
enabled high-fidelity modeling of soft robot behaviors.[35–37]

FEM-based simulations provided in the SOFA allowed physical
interactions with the environment,[38,39] but they face limitations
in scalability and computational efficiency. Although model
order reduction (MOR) techniques improve runtime perfor-
mance, they are often task-specific and computationally intensive
to implement.[40,41]

In parallel, several RL environments tailored to soft robotics
have been introduced[42–44] with the aim of learning control
policies directly through interaction. However, achieving high-
precision control, particularly in both position and force domains,
remains difficult due to the complexity of soft body dynamics and
limited simulation speed or accuracy. These efforts collectively
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Soft robotics holds immense promise for applications requiring adaptability and
compliant interactions. However, the lack of sufficiently fast and accurate simu-
lation environments for soft robots has hindered progress, particularly in linking
with reinforcement learning (RL) applications. Traditional finite element method
(FEM) models provide precise insights into soft robot dynamics but are compu-
tationally intensive and impractical for accelerated simulation. This work introduces
a novel framework that integrates high-fidelity FEM simulations with compu-
tationally efficient physics-based simulations through a surrogate model tailored
for RL. The surrogate model, trained on real-world and FEM-generated datasets,
captures complex dynamics while maintaining efficiency. Sim2real experiments
validate the framework, implementing the trajectory tracking and the force
control tasks with high accuracy. These results demonstrate the framework’s
ability to bridge the simulation gap, enabling its application to advanced tasks,
such as manipulation and interaction in unstructured environments.
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underscore the need for a unified solution that combines efficient
simulation fidelity with learning-based control capabilities.

This work introduces a framework that embeds soft robotic
models in a physics-based simulation environment compatible
with RL. The framework bridges FEM models and efficient
physics-based simulations with a computationally efficient alterna-
tive model. It addresses three key objectives: 1) transferring high-
fidelity FEM data into fast, physics-based simulations while pre-
serving essential dynamics, 2) enabling accelerated simulations
and data acquisitions for the RL environment, and 3) validating
the framework by analyzing themodel accuracy in each simulation
domain and sim2real transfer tasks. Beyond improving control
and simulation efficiency, this framework lays the foundation
for data-driven learning in soft robotics by enabling rapid iteration
and safe policy exploration. It opens new possibilities for using

high-resolution physics-informed simulations to accelerate RL
across a range of tasks, including manipulation, interaction,
and compliant control in real-world environments.

2. Framework Overview

A three-domain framework was developed to bridge real hard-
ware, high-fidelity FEM simulation, and accelerated physics-
based RL environments. An overview of the simulation-to-learning
pipeline is presented in Figure 1. A pneumatic soft manipula-
tor[45] was selected as the representative system due to its high
degrees of freedom and nonlinear dynamic characteristics.[46,47]

This platform provides a structured benchmark for evaluating
control-oriented simulation strategies.

Figure 1. Overview of the proposed framework connecting three different domains (“Real robot”, “FEM simulation”, and “Physics-based simulation”)
representing a common soft manipulator. The soft manipulator is actuated by the pressure input (P), and the output includes the state positions (X) and

the velocities (X
:
). The input and the output are marked with the subscripts R, S, and P, respectively. Between each domain, connections were developed

utilizing simulations and methodologies, such as the model calibration, the feature mapping, and the sim2real transfer learning.
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The high-fidelity model was constructed in SOFA, incorporat-
ing nonlinear material behavior and pressure-driven actuation.
This model enabled accurate prediction of the manipulator’s
response under varying pressure inputs while avoiding hardware
degradation. To reduce computational overhead, MOR techni-
ques[40,41,48] were applied, enabling efficient generation of
time-series data for forward and inverse kinematics learning.

Despite its precision, SOFA-based simulation remains computa-
tionally intensive and therefore unsuitable for RL, which demands
large volumes of agent–environment interactions.[42,43] To address
this, a surrogate model was implemented in PyBullet, selected for
its real-time performance, robust collision handling, and integration
with established learning libraries. The surrogate model comprises
a combination of revolute and prismatic joints arranged to approxi-
mate the deformation patterns observed in the FEM simulation,
allowing for efficient policy training and transfer.

The primary contribution lies in the integration of three distinct
domains: real hardware, FEM-based simulation, and physics-driven
surrogate environments, through a set of data-driven mapping
functions. The mappings between each domain ensure dynamic
consistency and enable bidirectional transfer between domains.

3. Model Calibration

3.1. FEM Model Construction

The calibration process begins by replicating the real robot config-
uration in the SOFA FEM environment. The physical system con-
sists of a bellow-type parallel manipulator actuated via three

independent pressure regulators, mounted on a fixed frame with
an actuated top plate, as shown in Figure 2a. This setup was recon-
structed in SOFA using a volumetric tetrahedron mesh with three
internal cavity meshes for actuation, as shown in Figure 2b.

To align the simulation with the hardware, the state variables
of the model were set as shown in Figure 2c. The state variables
consist of the position of the tool center point (TCP) (p ∈ ℝ3), the
length of the backbone of the manipulator (l ∈ ℝ1), curvature
(κ ∈ ℝ1), and the relative orientation of the top plate (q ∈ ℝ3).
Together, they form a configuration state vector (X ∈ ℝNs ) and

its velocity counterpart (X
:
∈ ℝNs ), where Ns is the total number

of the total dimensions of the state variables. Material properties
such as Young’s modulus (E) and Poisson’s ratio (v), as well
as the parameters to determine the hyperelastic governing
equation of the robot, were optimized to match two domains
(Supporting Information Section 2).

3.2. Domain Mapping Functions

The pressurized cavities were simulated in the SOFA environ-
ment using boundary conditions and quadratic program (QP)
solvers.[39] Discrepancies between real-world pressures (PR)
and simulated pressures (Ps) were corrected by using a multi-
layer perceptron (MLP)

PS ¼ f RSðPRÞ (1)

which calibrates the input pressures required for consistent TCP
positioning. The network maps measured inputs—pressures

Figure 2. a) Components of the soft manipulator in the real-world setup, including the bellows-integrated manipulator. b) FEMmodel of the soft manip-
ulator in the SOFA simulation scene, utilizing a mesh model that replicates the physical structure. c) Configuration state information (X) of the soft
manipulator, which is necessary to define the behavior of the manipulator. d) Input pressure mapping and calibration process between the real robot and
the FEM model, achieved using motion capture data (XR) to align the dynamics between the two domains. e) Snapshot collection from the SOFA
simulation, where the three bellows were actuated with varied pressures (PS) and external forces (τS). The right plot presents the position data
(XS) collected over the simulations.
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(PS ∈ ℝ3) and external forces at the TCP (τ ∈ ℝ3) to the esti-
mated dynamic states (X, X), as shown in Figure 2d. The detailed
information is provided in Supporting Information Section 4.

3.3. MOR

To enable efficient simulation while preserving the deformation
characteristics of the soft manipulator, MOR was applied using
proper orthogonal decomposition (POD). The high-dimensional
nodal state of the FEM model at each time step was denoted as
pðtÞ ∈ ℝ3N , where N is the number of mesh nodes and each entry
represents 3D displacement coordinates. A snapshot matrix
Sn ∈ ℝ3N�M was constructed by collectingM time-series samples

Sn ¼ ½pðt1Þ, pðt2Þ, : : : , pðtMÞ� (2)

Singular value decomposition was applied to extract the dom-
inant spatial deformation modes

Sr ¼ UΣVT (3)

where U contains orthonormal spatial modes, Σ is a diagonal
matrix of singular values, and V encodes the temporal evolution.
A reduced basis Φ ∈ ℝ3N�r was defined by selecting the first r
dominant columns of U. The high-dimensional nodal state
was then approximated by projecting onto this subspace

pðtÞ � ΦaðtÞ (4)

where aðtÞ ∈ ℝr denotes the generalized coordinates in the
reduced space.

As shown in Figure 2e, training data were generated by apply-
ing randomized pressure inputs and external forces to the FEM
model, capturing over 100 000 simulation frames. From these,
key nodal regions were retained, including the TCP node
(XTCP) and boundary contact nodes (Xb), to preserve the critical
interaction behavior. These reduced representations were later
used to derive the low-dimensional state vector XSðtÞ ∈ ℝNs ,
which includes physical quantities such as position, curvature,
arc length, and orientation. This reduced-order formulation sig-
nificantly accelerated the simulation while maintaining sufficient
accuracy for control and learning. Full implementation details
are provided in Supporting Information Section 3.

4. Dynamics Modeling using Surrogate Model

4.1. Transformer-Based Physics-Informed Dynamics Modeling

The model was designed to predict the Cartesian velocity of the
manipulator based on time-series joint configurations and con-
tact forces. Figure 3a shows the entire structure of the dynamics
model trained from the collected SOFA dataset. Each time step
included an input vector

st ¼ ½XS,PS, τP� ∈ ℝNsþ6 (5)

Figure 3. a) Architecture of the data-driven dynamics model combining a Transformer encoder with physics-informed residuals. The training objective
integrates data loss and physical constraints into a unified loss function. b) Mapping between pressure inputs (PS) and joint angles (θP) across two
simulation environments. The dataset, derived from SOFA simulation snapshots, was used to optimize state alignment between the SOFA and PyBullet
models. The trained forward model predicts joint angles (θP) from pressure inputs (PS), minimizing the discrepancy in predicted states. The rightmost
figure shows the resulting alignment of states under varied inputs in both simulation domains.
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A sequence ofm past steps was collected as the input sequence

X t ¼ ½st�m�1, : : : , st� ∈ ℝm�ðNsþ6Þ (6)

The sequence was linearly projected onto a high-dimensional
space and processed by a Transformer encoder (T enc)

[49] com-
posed of two attention layers with four heads each. The encoded
representation at the final time step was used as a latent vector Zt

for downstream dynamics modeling, such as

Zt ¼ T encðX tÞ (7)

The latent vector was passed to a physics-informed neural net-
work (PINN),[50] which predicted the Cartesian velocity of the
manipulator

bẊSðtþ 1Þ ¼ f PINNðztÞ (8)

The physics residual was computed using a constrained multi-
body dynamics model[40,41] as

ℜt ¼ MðbXSðtÞÞb̈XSðtÞ � PSðtÞ þ FðbXSðtÞ, bẊSðtÞÞ þHTλðtÞ (9)

Here, M denotes the mass matrix derived from the FEM
model, PSðtÞ is the pressure-induced force vector, F represents
internal elastic and damping forces, and HTλðtÞ captures con-
straint forces from fixed supports or contact boundaries. The
total loss was defined as

ℒtotal ¼ kbẊSðtþ 1Þ � ẊSðtþ 1Þk2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ℒT

þ λ ⋅ kℜtk2
|fflffl{zfflffl}

ℒP

(10)

The loss weight λ was manually selected to balance accuracy

and physical consistency.[51] All ground truth velocities X
:

Sðtþ 1Þ
were obtained from the SOFA simulation dataset. This results in
a learned dynamics function of the form

bẊSðtþ 1Þ ¼ f SðχtÞ (11)

where fs denotes the combined Transformer and PINN model
that maps the input sequence X t to the predicted Cartesian veloc-
ity while preserving physical consistency. Futher derivations are
in Supporting Information section 6.

4.2. Surrogate Model for Physics-Based Simulation

A data-driven surrogate model was developed to approximate the
deformation behavior of the soft manipulator and enable accel-
erated simulation. The model replicates the evolution of the con-
figuration states XS under pneumatic actuation, including the
motion of the TCP, and was calibrated to match the range of
motion (ROM) observed in the high-fidelity SOFA simulation.

The surrogate design was guided by node-level analysis of the
reduced-order FEM mesh. Boundary nodes (Xb) were extracted
from six bellows segments, each sampled from the outermost
regions of six longitudinal layers to define the radial boundaries.
As shown in Figure 4a, these nodes form the collision boundary

Figure 4. a) Reduced FEM mesh with layer-wise boundary nodes (Xb) marked in blue. These nodes define the potential collision boundary (Bc) of each
segment and are preserved during MOR to ensure contact fidelity. b) Contact boundaries computed by projecting Xb onto regression planes fitted to each
layer. Red dashed circles denote the average radial boundary Ri, and the minimal boundary radius Rmin was selected as a design constraint for the
surrogate model. c) Structure of the surrogate model composed of planar links connected by rotational joints (θxi , θyi ) and prismatic joints (θdi ).
d) Configuration matching between the surrogate model and the real robot, illustrating consistent deformation behavior and parameter correspondence
between the two domains.
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(Bc) of the deformable body. Their positions were projected onto
regression planes to characterize radial deformation, yielding
average contact radii by layer (Ri), where i ¼ 1, : : : , 6. The
smallest of these values, Rmin, was used as a conservative
constraint in the surrogate geometry, illustrated by the red
dashed circles in Figure 4b.

Based on this geometric characterization, the surrogate model
comprises six identical planar links stacked vertically, as shown
in Figure 4c. Each pair of adjacent links is connected via two
rotational joints (θxi , θyi ) and one prismatic joint (θdi ), enabling
omnidirectional bending and extension. The overall height, diam-
eter, and thickness of the link were derived from the length of the
arc (l) and the contact boundaries. The detailed design parameters
are provided in Supporting Information section 7 and section 8.

The model was implemented in universial robot description for-
mat with explicit definitions of mass distribution, joint limits, and
link dimensions, reflecting both ROM and self-contact constraints
from FEM. As illustrated in Figure 4d, the surrogate demonstrates
dynamic consistency with the reference configuration space of the
real robot. This formulation preserves essential deformation and
contact characteristics while offering a reduced computational cost,
making it well-suited for RL and online control tasks.

4.3. Mapping between Actuation Domains

To enable simulation-to-simulation transfer between the FEM
model and the surrogate model, a data-driven mapping was
developed to align their respective actuation spaces. In the
FEM domain, the robot is actuated by pressures (PS ∈ ℝ3), while
the surrogate model operates in a joint space using grouped joint
commands (θP ∈ ℝNa ), where Na is the DOF of the surrogate
model. A forward mapping from pressure to joint configuration
was established to ensure that both models generate consistent
motions (XS � XP), as illustrated in Figure 3b.

The mapping process first involved a constrained optimiza-
tion, in which the joint angles θP were iteratively adjusted to min-
imize the Euclidean distance between the TCP position of the
surrogate model XP(θP) and the reference TCP position Xs(PS)
obtained from the FEM simulation. The optimization problem
was formulated as

θ�P ¼ argmin
θP

kXPðθPÞ � XSðPSÞk2 (12)

subject to joint limits

Lθ ≤ θP ≤ Uθ (13)

This problem was solved using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm with box con-
straints (L-BFGS-B),[52] which ensures physically feasible config-
urations despite the redundant DOFs of the surrogate model.
The optimization procedure is detailed in Algorithm 1 and in
Supporting Information section 5.

Once optimized joint configurations θ�P were collected across a
range of pressure inputs PS, another fully connected MLP was
trained to approximate the mapping

θPðtÞ ¼ f SPðPSðtÞÞ (14)

where FSP denotes the learned mapping function. This network
enables the continuous and efficient translation of pressure com-
mands in the FEM domain into joint space control signals,
enabling the surrogate model to follow the dynamics learned
in Equation (9).

Figure 3b shows the mapping pipeline, including the
optimization-based correspondence between models and the
learned regression function. This cross-domain actuation
alignment serves as a critical interface for sim-to-sim transfer
and supports RL in the surrogate domain while retaining the
physical fidelity of the FEM reference.

4.4. Inverse Dynamics Modeling

In contrast to forward dynamics prediction, which estimates
future states from given control inputs, inverse dynamics model-
ing aims to infer the actuation inputs required to achieve a
desired state transition. Specifically, the objective was to predict
the pressure input vector PS(t) that yields a target Cartesian veloc-
ity ẊSðtþ 1Þ, given the current state information (XS(t)) and the
external contact force (τext(t)).

This setting is particularly relevant in trajectory tracking or
position control, where the desired motion is known a priori
and the corresponding actuation must be inferred. For example,
given a reference trajectory Xref(t), the system must determine
the pressure inputs that produce the velocity required to follow
this path. The inverse model thus functions as a control-oriented

Algorithm 1. 1 L-BFGS-B Optimization Pseudo code for Actuation Space
Mapping

1: Input:
• Target TCP position Xtarget ∈ ℝ3

• Initial guess θ0 ∈ ℝNa

• Joint limits Lθ ,Uθ ∈ ℝNa

• Maximum iterations Nmax

• Tolerance ε > 0
2: Output: Optimized joint angles θ�P
3: Define objective function:

f ðθÞ ¼ kXactualðθÞ � XtargetðPSÞk2
4: Solve optimization:

θ�P ¼ argminθP f ðθPÞ subject to Lθ ≤ θP ≤ Uθ

5: Initialize: θP ← θ0
6: Set iteration counter k← 0
7: while not converged and k < Nmax do
8: Compute current TCP position: Xactual ¼ XactualðθkPÞ
9: Compute gradient ∇f ðθkPÞ
10: Update joint angles using L-BFGS-B:

θkþ1
P ¼ θkP � αk∇f ðθkPÞ

(where αk is determined by line search)
11: Apply joint limits:

θkþ1
P ¼ minðmaxðθkþ1

P , LθÞ,UθÞ
12: if k∇f ðθkþ1

P Þk < ε or kθkþ1
P � θkPk < ε then

13: break
14: end if
15: k← k þ 1
16: end while
17: return θ�P and Xactualðθ�PÞ
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module that maps motion intent into executable actuation
commands.

Due to redundancy in actuation and the underdetermined
nature of the inverse mapping, a separate neural network was
trained to approximate the function

P̂SðtÞ ¼ f †SðXSðtÞ, τextðtÞ, ẊSðt þ 1ÞÞ (15)

where f †S is a MLP trained using data from the FEM simulation.
The training objective minimizes the supervised prediction error
as

ℒ†

S ¼ kP̂SðtÞ � PSðtÞk2 (16)

An auxiliary loss was used by passing the predicted pressure
P̂SðtÞ through the pretrained forward model fs defined in
Equation (9) to promote consistency with system dynamics. A
cycle-consistency objective was set as

ℒcyc ¼ kf SðX 0
tÞ � ẊSðtþ 1Þk2 (17)

where X 0
t is a synthetic input sequence constructed using the

predicted pressure. The total loss is defined as

ℒ†

total ¼ ℒ†

S þ β ⋅ℒcyc (18)

with β as a weighting parameter. The joint angle θP for the
surrogate model was obtained through the pressure to joint
mapping fSP.

5. Customized RL Environment

A customized RL environment was developed to evaluate the
effectiveness of the surrogate model and the trained dynamics
within standard learning pipelines. The environment was built
to be fully compatible with the Gymnasium-based interfaces,[53]

exposing conventional agent structures including observation
(Ot), action (at), and reward (Rt). A modular class structure
was implemented to manage the interaction logic, including
actuation, contact detection, and state updates. The structure
of the environment and the interaction of the agent are illustrated
in Figure 5a.

5.1. Task Definition

Three distinct control tasks were defined to evaluate different
aspects of the agent’s capability using the surrogate model.
Task 1 targets pure trajectory tracking in Cartesian space. The
agent is required to follow a predefined reference trajectory
Xref ∈ ℝNt�3, where Nt is the number of points. Two represen-
tative shapes were used: a circular path and a star-shaped path, as
shown in Figure 5d. Task 2 focuses solely on force control. The
agent must apply internal joint commands to generate the
desired contact force in the TCP, aligned with a target external
force vector τ�ext. Last, Task 3 combines position and force objec-
tives into a multiobjective control scenario. The agent follows a
tilted elliptical trajectory while maintaining a constant normal
force on a sloped contact surface Sref.

These task definitions were selected to evaluate the feasibility
of the surrogate model under varying physical objectives, ranging
from geometric accuracy to compliant contact behavior. An
example of hybrid trajectory-force control on a ramp stage is visu-
alized in Figure 5e.

5.2. Observation and Action Space

The observation vector provided to the agent includes joint and
TCP-level information, summarized as

Ot ¼ ½θP , θ
:

P , XP , X
:

P , τext� (19)

where θP and θ
:

P denote joint angles and velocities, XP and X
:

P
denote the position and velocity of TCP, and τext is the external
contact force vector measured at the TCP.

The action space consists of continuous joint-level actuation
commands:

at ¼ θcmd
P ∈ ℝNa (20)

where Na is the number of actuated degrees of freedom in the
surrogate model.

5.3. Reward Function Shaping

A composite reward function was employed to simultaneously
address position tracking and force regulation

R ¼ αRq þ ð1� αÞRF (21)

where Rq and RF represent the normalized rewards for position
and force, respectively. Both terms were scaled within [0,1] based
on the ideal task performance, and the scalar α ∈ ½0, 1� was used
to balance their contributions.

The position reward Rq was defined as a decreasing function
of the norm-2 error δq ¼ kXP � Xrefk2 between the current and
target TCP positions. To encourage sequential trajectory execu-
tion, rewards were conditioned by the current step index such
that only proximity to the next target point contributed to the
accumulated return. This mechanism is visualized in Figure 5b.

The force reward RF was determined from the root mean
square error δF between the measured contact force and the ref-
erence force vector τ�ext. The empirical shapes of Rq and RF were
selected to ensure smooth reward gradients and training stability,
as illustrated in Figure 5c.

The resulting reward structure captures the multiobjective
nature of the task space, balancing geometric accuracy with inter-
action forces. The final profile of the combined reward function
is depicted in Figure 5e.

6. Experimental Section

6.1. Sim2Real Learning Framework

The experiments evaluate the proposed learning pipeline across
three domains: the real soft manipulator, an FEM simulation in
SOFA, and a physics-based surrogate model implemented in
PyBullet. All experiments were conducted using a pneumatic soft
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manipulator configured as a parallel mechanism, where three
bellows actuators are positioned between two rigid plates. The
bottom plate was rigidly mounted to the base frame, and the
top plate was free to move under internal pressure. This config-
uration was used consistently across simulation and real-world
experiments. For interaction tasks, a load cell and custom tool
tips were attached to the top plate to enable external force appli-
cation and measurement, as shown in Figure 2a. The full experi-
mental setup, including the optical marker placement and
motion capture system, is shown in Figure 6a.

The actuator in the real and simulated systems was defined
within a pressure range of �20 to 35 kPa, selected to ensure
structural safety and consistency in the ROM. The surrogate

model replicates the ROM using joint angle actuation derived
from learned mappings.

The pipeline of deployment for the sim2real transfer is
shown in Figure 6b. A trained policy π(θP(t)|Ot) produces joint
commands, which are converted into simulated pressures
using the mapping function fSP, and subsequently into real
robot pressures using fPR. A moving average filter smooths
the resulting pressure signals PR(t) before execution. The infer-
ence loop operates at over 300 Hz, while the actuation of the
real system was limited to 2 Hz due to hardware constraints.
The quantitative analysis of the hardware system bandwidth
was conducted and reported in the Results section and
Figure 9c.

Figure 5. a) Customized RL environment setup illustrating the interaction between the agent and the environment across three tasks involving position
and force controls. b) (left) Sequential position rewards conditioned on the order of trajectory points, ensuring the agent follows the path in the correct
sequence. (right) The force error (δF) is computed with the target force vector. c) Reward function shapes for position (Rq) and force (RF), showing their
respective contributions. d) Predefined trajectory (Xref ) consisting ofm coordinates on the target surface (Sref ). The example shown corresponds to Task
3, where the trajectory follows an elliptical path on the ramp surface. e) Manifold of the combined reward function (R), where the weighting factor (α)
determines the balance between the position and the reward of the force.
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6.2. Data Acquisition and Agent Training

Comprehensive data collection was conducted in each domain. In
the real system, 5000 distinct pressure configurations were applied
in the range �20–30 kPa per actuator (Supporting Information
Section 1). Each case was held for stabilization, and the resulting
motions were recorded using the motion capture system.

In the FEM domain, the pressure input (PS) and the external
contact forces (τest) were applied to a model using the same pres-
sure range. The contact forces (τest) did not exceed 2 N, which
corresponds to the maximum payload of the manipulator. The
simulation was run at a time step of 0.01 s, generating outputs
at 5.56 Hz. Approximately two million samples were collected
and used to train the dynamics model in Equation (9).

In the PyBullet-based surrogate domain, the joint angle limits
were derived from the FEM-ROM by mapping fSP. The simula-
tion of the surrogate model was sampled at over 1000Hz, with
each configuration executed over 20 control steps to efficiently
generate the training dataset for RL.

A custom Gym-compatible RL environment was constructed
around the surrogate model. The observation space includes

joint states ðθP, θ
:

PÞ, TCP position and velocity ðXP , ẊPÞ,
and external contact force (τest). The action space consists of
continuous joint commands. Three agents were tested: soft
actor-critic,[54] proximal policy optimization,[55] and behavior
cloning.[56] These agents represent off-policy, on-policy, and
supervised imitation learning methods, respectively, and were
implemented using the stable-baselines3 library.[57]

6.3. Task Setup and Evaluation

The framework was validated on three distinct control tasks of
increasing complexity, summarized in Figure 6d. All tasks were
implemented in both the simulation and the hardware.

The trajectory tracking task involved following predefined
Cartesian paths, including circular and star-shaped trajectories.
For example, a circular trajectory was defined as Xref(t)= [r cos t, r
sin t, z0]. The trained policy reproduced these paths on the real
robot with high spatial accuracy, as confirmed by comparing the
simulated trajectory Xp(t) and the real measurement XR(t).

The force-induced deformation estimation task evaluated the
agent’s ability to predict the resulting displacement caused by
external loading. A weight was applied to the TCP, shifting
the configuration from the unloaded state Xw/o to the deformed
configuration Xw. The agent inferred the deformed position
under load, predicting Xw based on the applied force (τest) and
the current state of the manipulator.

The hybrid control task combined trajectory tracking with force
regulation. The agent was required to follow a tilted elliptical path
while maintaining a constant normal contact force. The agent
achieved accurate performance in both objectives, with contact force
vectors that closely matched target values throughout the task.

All tasks were implemented in a mirrored PyBullet simulation
that included identical geometry, contact surfaces, and force
measurement instrumentation, as shown in Figure 6c. This
ensured consistency between simulation and real-world deploy-
ment for effective policy transfer.

Figure 6. a) Motion capture setup used for collecting real-world robot data, incorporating the optical markers and the cameras for precise state estima-
tion. b) Sim2real transfer pipeline illustrating a real-time mapping between the PyBullet simulation and the real robot. c) Mirrored real-world task imple-
mentation setup in the PyBullet environment, including the force measurement units and a contact object. d) Three types of Sim2real tasks: i) trajectory
tracking, ii) force control, and iii) hybrid control.
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7. Result

7.1. Calibration Results and Validation

The reachable configuration spaces of the real robot, the FEM
simulation, and the surrogate model were collected under iden-
tical actuation constraints and compared. Figure 7a shows the
resulting trajectories in the Cartesian plane. The surrogate model
covered the entire reachable space observed in both the FEM sim-
ulation and the real robot, including all positions recorded in
physical experiments. The FEM and the real robot exhibited close
agreement in their ROM.

The differences between the FEM model and the real robot
were quantified in five configuration variables: tip position

(pS), tip velocity (p
:

S), arc length (lS), orientation (qS), and curva-
ture ðκSÞ. Configuration errors were normalized using min–max
scaling within each variable’s domain-specific range. The nor-
malized mean errors and standard deviations for each variable
are shown in Figure 7b and summarized in Table 1.

Two neural network mappings were used to translate between
the domains: fRS from real to simulated pressures, and fSP from
simulated pressures to the surrogate model’s joint angles. The
average prediction error for fRS was 0.13 kPa. For the fSP map-
ping, the average prediction error was recorded as 0.32 deg
for the rotational joints (θx,y) and 4.23mm for the prismatic joints
(θd), as detailed in Table 1. It is important to note that these joint-
level errors do not directly propagate to the end-effector’s

Figure 7. a) Comparison of the reachable configuration space across the three domains: real robot, FEM simulation, and surrogate model. Each boundary
represents the ROM achieved under actuation constraints. b) Normalized average errors and standard deviations for key configuration variables, comparing
FEM simulation and real-world measurements. Metrics include position, velocity, orientation, curvature, and actuator length. c) Prediction accuracy of the

learned forward dynamics model fS, showing the absolute values of the predicted state bXS and velocity
bẊS compared to ground truth from the FEM simulation.

d) Optimized mapping from FEM dynamics to the joint space of the surrogate model, aligning the predicted states bXP and bẊP over time [t, tþΔt]. e) Inverse
dynamics results predicting actuator pressures P̂S from target motion states, demonstrating the capability to reconstruct input pressures from desired
trajectories.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, e202500696 e202500696 (10 of 15) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202500696 by Seoul N

ational U
niversity, W

iley O
nline L

ibrary on [19/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Cartesian position. This effect is attributed to the kinematic
redundancy of the soft manipulator, where the mapping from
a three-pressure input to a multiple joint space allows for multi-
ple joint configurations to achieve a similar end-effector pose.

7.2. Results of Learned Dynamics Models

The performance of the learned forward dynamics model ( fS)
was evaluated using validation sequences collected from the
FEM simulation. Figure 7c presents the predicted states (bXS)

and velocities (bẊS) over time. Quantitative prediction errors
are reported in Table 1, with mean errors of 3.35mm for position
and 14.56mm s�1 for velocity.

Figure 7d shows the results of transferring the learned for-
ward dynamics model fS to the joint space of the surrogate model
using the mapping function fSP. Given a target state (XS) and a
velocity (ẊS), the corresponding joint configuration (θP) was esti-
mated and applied to the surrogate model.

The inverse dynamics model estimated the actuator pressures
of desired motion targets. Given the target state (XS) and the
velocity (ẊS), the model predicted the required input pressures
(P̂S;i) to drive the system. Figure 7e illustrates the estimated pres-
sures for multiple samples. Table 1 reports the mean pressure
prediction error as 0.38 kPa and the corresponding joint angle
reconstruction error as 0.17 deg.

7.3. Policy Evaluation

The trained RL agents were evaluated on three control tasks
involving position, force, and hybrid objectives. Each policy
was trained in the customized gym environment using joint-level
actuation of the surrogate model and then transferred to the real
robot using the mapping functions fSP and fPR, as shown in
Figure 6b. The policies were trained using three different RL
agents, and the detailed reward progression over training
episodes is provided in the Supporting Information Section 9.

For each task, the policy with the highest final reward among
the three algorithms was selected for evaluation.

In Task 1, the agent executed predefined Cartesian trajectories,
including circular and star-shaped paths. Figure 8a presents the tra-
jectory tracking results in both the simulation (Xp) and the real sys-
tem (XR). The simulated execution by the surrogate model is shown
in blue, while the sim2real execution is shown in red. Table 2
reports the average tracking errors for the circular and star
trajectories, with surrogate-level errors of 1.02 and 1.24mm, and
corresponding sim2real errors of 3.38 and 6.79mm.

In Task 2, the agent was given a target state representing the
deformation under external loading (τext) and was required to
estimate the resulting position. Figure 8b shows the unloaded
state (Xw/o) and the target deformed position obtained from
the simulation, marked as red crosses (Xw). The agent’s predic-
tions from multiple trials are shown as blue circles (Xw), repre-
senting the estimated deformed positions under load. Table 2
reports the average position errors with respect to the simulation
target, yielding 3.20mm in simulation and 4.68mm in sim2real.

In Task 3, the agent followed a tilted elliptical trajectory (Xref )
while regulating contact force (Fn). Figure 8c shows the executed
trajectory on the reference surface (Sref ). The norm-2 force track-
ing error is shown in Figure 8d, and the component-wise force
profiles (Fx, Fy, Fz) are shown in Figure 8e. As reported in
Table 2, the simulation errors were 1.35mm in position and
0.55 N in force. The corresponding sim2real errors were
4.20mm and 0.70 N.

7.4. Additional Experimental Validation for Performance and
Robustness

For further validation of the proposed sim2real agent and to ana-
lyze its performance in more challenging scenarios, three addi-
tional experiments were conducted. These experiments focused
on policy generalization, robustness to external disturbances,
and a quantitative characterization of the system’s physical
limitations. They collectively demonstrate the practical viability
and resilience of the sim2real pipeline.

7.4.1. Generalization to Complex 3D Trajectories

The generalization capability beyond the training tasks was eval-
uated by implementing the learned policy with a complex, non-
planar 3D trajectory not seen during training. This task required
the soft manipulator to trace a figure-eight path on a curved sur-
face. As depicted in Figure 9a, the real robot successfully tracked
this intricate 3D path with high precision comparable to the
result of Task 1. The average tracking error was recorded as
5.34mm with a standard deviation of 0.38mm. The close align-
ment between the reference trajectory (Xref ), the surrogate mod-
el’s prediction (Xp), and the real robot’s execution (XR) confirms
that the framework can generalize effectively to complex, 3D
trajectories.

7.4.2. Robustness to External Disturbances

In order to assess the robustness of the agent as a closed-loop
controller, a physical perturbation experiment was performed

Table 1. Mapping errors between domains.

Mapping Variable Value (Mean� Std) Unit

MLP functions fRS 0.13� 0.02 kPa

fSP θx,y: 0.32� 0.02 deg

θd : 4.23� 0.06 mm

Model calibration (Real–SOFA) lS 0.30� 0.06 mm

qS 0.35� 0.08 deg

κS 0.21� 0.04 mm�1

pS 1.40� 0.62 mm

pS 12.69� 4.29 mm s�1

Dynamics learning (SOFA–PyBullet) bXp
3.35� 0.43 mm

bẊp
14.56� 4.38 mm s�1

Inverse dynamics P̂S 0.38� 0.05 kPa

θ̂p 0.17� 0.04 deg
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on the real robot. During the planar circular trajectory tracking
task from Task 1, a disturbance was induced via an intentional air
supply disconnect to one of the three pneumatic chambers dur-
ing the actuation. The supply was then reconnected five seconds
later to confirm how the agent recovers from the external

disturbance. As shown in Figure 9b, a sharp deviation from
the trajectory, followed by a rapid and stable recovery. The policy
compensated for the error and converged back to the circular ref-
erence path within five seconds of the line being reconnected.

7.4.3. Bandwidth Limitation in Policy Rollout

When validating the learned rollout policy on the physical hard-
ware, the system’s operational speed is a critical factor. To inves-
tigate the performance limitations, the bandwidth of the
hardware was quantitatively analyzed. The mean position error
was measured for a point-to-point positioning task while system-
atically increasing the input command frequency. The results,
shown in Figure 9c, reveal that a critical bottleneck exists within
the hardware itself. A sharp increase in tracking error was
observed as the frequency exceeded �2Hz. The measured posi-
tion errors increased from 13.8 to 63.9 mm after this frequency.
This analysis demonstrates that the control speed during policy
rollout is constrained by the physical response of the pneumatic
hardware, not the inference rate of the policy. The detailed error
and standard deviation values for each frequency are provided in
the Supporting Information Section 1.

Table 2. Task implementation errors.

System Task Target Value (Mean� Std) Unit

RL agent (bXP) Task 1 Xref : Circular 1.02� 0.61 mm

Xref : Star 1.24� 0.50 mm

Task 2 Xw 3.20� 0.52 mm

Task 3 Xref 1.35� 0.43 mm

Fref 0.55� 0.19 N

Sim2real (bXR) Task 1 Xref : Circular 3.38� 1.49 mm

Xref : Star 6.79� 1.56 mm

Task 2 Xw 4.68� 1.77 mm

Task 3 Xref 4.20� 1.22 mm

Fref 0.70� 0.16 N

Figure 8. a) Trajectory tracking results for Task 1. The plot on the left shows the prediction of the surrogate model in simulation (XP, blue), while the plot
on the right shows the sim2real results using the real robot (XR, red). Both results follow the predefined target trajectory Xref. b) Task 2: deformation
compensation under external load. The unloaded position Xw/o and the externally deformed position Xw are shown as red crosses, while the corrected
position predicted by the agent Xw is shown as blue circles. c) Task 3: hybrid control results in which the agent follows a tilted elliptical trajectory Xref on the
sloped reference surface Sref, while maintaining contact. d) Norm-2 force tracking error kF� Frefk during Task 3, showing temporal accuracy of the
contact force. e) Component-wise tracking of the target contact force (Fx, Fy, Fz) over time, confirming stable force regulation.
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8. Discussion

This study introduced an integrated sim2real framework for soft
robot control that connects high-fidelity FEM simulation, dynam-
ics modeling, surrogate abstraction, and RL. The framework was
designed to address key challenges in soft robot learning,
including nonlinear deformation, high compliance, and actuation
redundancy, while maintaining compatibility with standard RL
toolkits.

The FEM-based model, constructed in SOFA, was calibrated
against real robot measurements using dense pressure sweeps
and motion capture data. The MOR formulation using POD
enabled efficient simulation while preserving key deformation
modes. The resulting dataset supported the training of forward
and inverse dynamics models using a Transformer-PINN
architecture.

A data-driven surrogate model was developed to enable
real-time simulation and policy training. The model replicated
the ROM and actuation responses of the FEM simulation
using a joint link structure implemented in PyBullet.

The learned mappings between FEM pressure inputs and
surrogate joint angles preserved physical consistency.
This allowed the surrogate to be used interchangeably during
training while maintaining alignment with FEM-based
predictions.

The forward and inverse dynamics models enabled accurate
motion prediction and actuation inference within the FEM
and surrogate domains. The learned dynamics generalized
across unseen trajectories and supported stable behavior gener-
ation when transferred to the surrogate model. The use of
actuation-space mappings ensured that predictions from the
forward model could be faithfully reproduced through the
joint-level abstraction, preserving temporal structure and
physical consistency.

Across all tasks evaluated, the learned policies demonstrated
robust trajectory execution and force regulation in simulation.
When transferred to the real robot, the policies maintained task
objectives but exhibited increased errors due to physical discrep-
ancies not captured in the simulation pipeline. These included
unmodeled contact hysteresis, actuator latency, and material

Figure 9. a) Generalizability of sim2real transfer is demonstrated by tracking a complex 3D nonplanar figure-eight trajectory not seen during training.
b) Robustness of the RL policy is evaluated by showing successful recovery from an unexpected physical disturbance (temporary pneumatic line dis-
connection) during a circular trajectory task. c) Quantitative characterization of the hardware-imposed control bandwidth is presented by plotting the
mean position error versus input pressure command frequency.
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friction. Despite these factors, the sim2real transfer was stable,
indicating that the surrogate abstraction and dynamics learning
components effectively supported zero-shot deployment. To fur-
ther probe the real-world capabilities of the framework, addi-
tional experiments were performed. These results confirmed
the policy’s ability to generalize to complex, nonplanar 3D trajec-
tories not encountered during training. Furthermore, the con-
troller demonstrated robustness, successfully recovering from
a large, intentional physical disturbance, highlighting its
closed-loop nature.

Several limitations remain. The surrogate model, while
effective for training, does not explicitly model elastic body inter-
actions or distributed compliance. Incorporating pseudocontin-
uum elements or compliant joint structures may improve
realism in contact scenarios. The inverse model also assumes
deterministic mapping, which may limit robustness under
uncertain loading or sensor noise.

Future work will extend the framework to contact-rich tasks
such as manipulation, locomotion, or environmental interaction
on deformable substrates. Enhancing the fidelity of contact sim-
ulation and tactile feedback in the surrogate domain may further
improve the transfer accuracy.

Although this study focused on a pneumatic manipulator,
the architecture is modular and actuator-agnostic, and
could be applied to other systems such as fiber-reinforced
actuators or tendon-driven arms. In contrast to task-specific pipe-
lines[31,32,43,58] or finely-tuned classical controllers, this approach
emphasizes generalization and adaptability. While a classical
controller might outperform on a single, known task, the
strength of the presented RL-based approach lies in its generali-
zation capabilities, as demonstrated by its success on the unseen
tasks. Furthermore, unlike other RL frameworks that often report
qualitative task success, our pipeline provides a pathway for
developing controllers for high-precision tasks that demand
quantitative accuracy. This focus on quantitative, generalizable,
and robust performance, validated through extensive real-world
experiments, positions the framework as a flexible and powerful
tool for developing learning-based controllers for a wide range of
complex soft robotic systems.
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